Show simple item record

dc.contributor.authorAcikgoz, Hakan
dc.contributor.authorBudak, Umit
dc.contributor.authorKorkmaz, Deniz
dc.contributor.authorYildiz, Ceyhun
dc.date.accessioned16/12/21 12:06
dc.date.available16/12/21 12:06
dc.date.issued2021
dc.identifier.issn0360-5442
dc.identifier.urihttp://dspace.beu.edu.tr:8080/xmlui/handle/20.500.12643/9809
dc.identifier.urihttps://doi.org/10.1016/j.energy.2021.121121
dc.description.abstractThis paper introduces a novel deep neural network (WSFNet) to efficiently forecast multi-step ahead wind speed. WSFNet forms the basis of the stacked convolutional neural network (CNN) with dense connections of different blocks equipped with the channel a
dc.language.isoEnglish
dc.publisherPergamon-Elsevıer Scıence Ltd
dc.sourceEnergy
dc.titleWSFNet: An efficient wind speed forecasting model using channel attention-based densely connected convolutional neural network
dc.typeArticle
dc.identifier.doi10.1016/j.energy.2021.121121
dc.identifier.wosWOS:000681276500004
dc.identifier.volume233


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record