dc.contributor.author | Acikgoz, Hakan | |
dc.contributor.author | Budak, Umit | |
dc.contributor.author | Korkmaz, Deniz | |
dc.contributor.author | Yildiz, Ceyhun | |
dc.date.accessioned | 16/12/21 12:06 | |
dc.date.available | 16/12/21 12:06 | |
dc.date.issued | 2021 | |
dc.identifier.issn | 0360-5442 | |
dc.identifier.uri | http://dspace.beu.edu.tr:8080/xmlui/handle/20.500.12643/9809 | |
dc.identifier.uri | https://doi.org/10.1016/j.energy.2021.121121 | |
dc.description.abstract | This paper introduces a novel deep neural network (WSFNet) to efficiently forecast multi-step ahead wind speed. WSFNet forms the basis of the stacked convolutional neural network (CNN) with dense connections of different blocks equipped with the channel a | |
dc.language.iso | English | |
dc.publisher | Pergamon-Elsevıer Scıence Ltd | |
dc.source | Energy | |
dc.title | WSFNet: An efficient wind speed forecasting model using channel attention-based densely connected convolutional neural network | |
dc.type | Article | |
dc.identifier.doi | 10.1016/j.energy.2021.121121 | |
dc.identifier.wos | WOS:000681276500004 | |
dc.identifier.volume | 233 | |