• Login
    View Item 
    •   DSpace Home
    • 6-ULUSAL ve ULUSLARARASI İNDEKSLERDE B.E.Ü. YAYINLARI
    • 01) WOS İndeksli Yayınlar Koleksiyonu
    • View Item
    •   DSpace Home
    • 6-ULUSAL ve ULUSLARARASI İNDEKSLERDE B.E.Ü. YAYINLARI
    • 01) WOS İndeksli Yayınlar Koleksiyonu
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    WSFNet: An efficient wind speed forecasting model using channel attention-based densely connected convolutional neural network

    Thumbnail
    Date
    2021
    Author
    Acikgoz, Hakan
    Budak, Umit
    Korkmaz, Deniz
    Yildiz, Ceyhun
    Metadata
    Show full item record
    Abstract
    This paper introduces a novel deep neural network (WSFNet) to efficiently forecast multi-step ahead wind speed. WSFNet forms the basis of the stacked convolutional neural network (CNN) with dense connections of different blocks equipped with the channel a
    URI
    http://dspace.beu.edu.tr:8080/xmlui/handle/20.500.12643/9809
    https://doi.org/10.1016/j.energy.2021.121121
    Collections
    • 01) WOS İndeksli Yayınlar Koleksiyonu [1011]
    • 02) Scopus İndeksli Yayınlar Koleksiyonu [895]





    Creative Commons License
    DSpace@BEU by Bitlis Eren University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     




    | Yönerge | Rehber | İletişim |

    sherpa/romeo

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Type

    My Account

    LoginRegister

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV