dc.contributor.author | Diker, Aykut | |
dc.contributor.author | Avci, Engin | |
dc.contributor.author | Tanyildizi, Erkan | |
dc.contributor.author | Gedikpinar, Mehmet | |
dc.date.accessioned | 16/12/21 12:06 | |
dc.date.available | 16/12/21 12:06 | |
dc.date.issued | 2020 | |
dc.identifier.issn | 0306-9877 | |
dc.identifier.uri | http://dspace.beu.edu.tr:8080/xmlui/handle/20.500.12643/9984 | |
dc.identifier.uri | https://doi.org/10.1016/j.mehy.2019.109515 | |
dc.description.abstract | Electrocardiogram (ECG) signals represent the electrical mobility of the human heart. In recent years, computer-aided systems have helped to cardiologists in the detection, classification and diagnosis of ECG. The aim of this paper is to optimize the numb | |
dc.language.iso | English | |
dc.publisher | Churchıll Lıvıngstone | |
dc.source | Medıcal Hypotheses | |
dc.title | A novel ECG signal classification method using DEA-ELM | |
dc.type | Article | |
dc.identifier.doi | 10.1016/j.mehy.2019.109515 | |
dc.identifier.wos | WOS:000517350600025 | |
dc.identifier.volume | 136 | |