Drone-assisted automated plant diseases identification using spiking deep conventional neural learning
dc.contributor.author | Demir, Kubilay | |
dc.contributor.author | Tumen, Vedat | |
dc.date.accessioned | 16/12/21 12:06 | |
dc.date.available | 16/12/21 12:06 | |
dc.date.issued | 2021 | |
dc.identifier.issn | 0921-7126 | |
dc.identifier.uri | http://dspace.beu.edu.tr:8080/xmlui/handle/20.500.12643/9884 | |
dc.identifier.uri | https://doi.org/10.3233/AIC-210009 | |
dc.description.abstract | Detection and diagnosis of the plant diseases in the early stage significantly minimize yield losses. Image-based automated plant diseases identification (APDI) tools have started to been widely used in pest managements strategies. The current APDI system | |
dc.language.iso | English | |
dc.publisher | Ios Press | |
dc.source | Aı Communıcatıons | |
dc.title | Drone-assisted automated plant diseases identification using spiking deep conventional neural learning | |
dc.type | Article | |
dc.identifier.issue | 2 | |
dc.identifier.startpage | 147 | |
dc.identifier.endpage | 162 | |
dc.identifier.doi | 10.3233/AIC-210009 | |
dc.identifier.wos | WOS:000696198200002 | |
dc.identifier.volume | 34 |
Files in this item
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |