dc.contributor.author | Ozturk, O. | |
dc.contributor.author | Yilmazer, R. | |
dc.date.accessioned | 2021-12-16T10:12:17Z | |
dc.date.available | 2021-12-16T10:12:17Z | |
dc.date.issued | 2017 | |
dc.identifier.isbn | 9.78074E+12 | |
dc.identifier.issn | 0094243X | |
dc.identifier.uri | https://doi.org/10.1063/1.4992528 | |
dc.identifier.uri | http://dspace.beu.edu.tr:8080/xmlui/handle/20.500.12643/13094 | |
dc.description.abstract | One of the most popular research interests of science and engineering is the fractional calculus theory in recent times. Discrete fractional calculus (DFC) has also an important position in the fractional calculus. The nabla operator in DFC is practical f | |
dc.language.iso | English | |
dc.publisher | American Institute of Physics Inc. | |
dc.relation.ispartof | International Conference of Numerical Analysis and Applied Mathematics 2016, ICNAAM 2016 | |
dc.source | AIP Conference Proceedings | |
dc.title | Particular solutions of the radial Schrödinger equation via Nabla discrete fractional calculus operator | |
dc.type | Conference Paper | |
dc.identifier.doi | 10.1063/1.4992528 | |
dc.identifier.scopus | 2-s2.0-85026677368 | |
dc.identifier.volume | 1863 | |