Show simple item record

dc.contributor.authorBudak, Ü.
dc.contributor.authorŞengür, A.
dc.contributor.authorGuo, Y.
dc.contributor.authorAkbulut, Y.
dc.contributor.authorVespa, L.J.
dc.date.accessioned2021-12-16T10:12:14Z
dc.date.available2021-12-16T10:12:14Z
dc.date.issued2017
dc.identifier.isbn9.78154E+12
dc.identifier.urihttps://doi.org/10.1109/IDAP.2017.8090215
dc.identifier.urihttp://dspace.beu.edu.tr:8080/xmlui/handle/20.500.12643/13068
dc.description.abstractInterpretting color fundus images by doctors is enhanced by computer-aided detection (CAD). Microaneurysm (MA) detection in CAD is an important step to identify the retinal diseases automatically. However, MA detection is still a challenging task due to t
dc.language.isoEnglish
dc.publisherInstitute of Electrical and Electronics Engineers Inc.
dc.relation.ispartof2017 International Artificial Intelligence and Data Processing Symposium, IDAP 2017
dc.sourceIDAP 2017 - International Artificial Intelligence and Data Processing Symposium
dc.titleA novel approach based on image processing algorithms for microaneurysm candidate detection
dc.typeConference Paper
dc.identifier.doi10.1109/IDAP.2017.8090215
dc.identifier.scopus2-s2.0-85039911921


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record