Show simple item record

dc.contributor.authorŞengür, A.
dc.contributor.authorGuo, Y.
dc.contributor.authorBudak, U.
dc.contributor.authorVespa, L.J.
dc.date.accessioned2021-12-16T10:12:14Z
dc.date.available2021-12-16T10:12:14Z
dc.date.issued2017
dc.identifier.isbn9.78154E+12
dc.identifier.urihttps://doi.org/10.1109/IDAP.2017.8090331
dc.identifier.urihttp://dspace.beu.edu.tr:8080/xmlui/handle/20.500.12643/13067
dc.description.abstractComputer-aided detection (CAD) provides an efficient way to assist doctors to interpret fundus images. In a CAD system, retinal vessel (RV) detection is an important step to identify the retinal disease regions automatically and accurately. However, RV de
dc.language.isoEnglish
dc.publisherInstitute of Electrical and Electronics Engineers Inc.
dc.relation.ispartof2017 International Artificial Intelligence and Data Processing Symposium, IDAP 2017
dc.sourceIDAP 2017 - International Artificial Intelligence and Data Processing Symposium
dc.titleA retinal vessel detection approach using convolution neural network
dc.typeConference Paper
dc.identifier.doi10.1109/IDAP.2017.8090331
dc.identifier.scopus2-s2.0-85039923290


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record