dc.contributor.author | Şengür, A. | |
dc.contributor.author | Guo, Y. | |
dc.contributor.author | Budak, U. | |
dc.contributor.author | Vespa, L.J. | |
dc.date.accessioned | 2021-12-16T10:12:14Z | |
dc.date.available | 2021-12-16T10:12:14Z | |
dc.date.issued | 2017 | |
dc.identifier.isbn | 9.78154E+12 | |
dc.identifier.uri | https://doi.org/10.1109/IDAP.2017.8090331 | |
dc.identifier.uri | http://dspace.beu.edu.tr:8080/xmlui/handle/20.500.12643/13067 | |
dc.description.abstract | Computer-aided detection (CAD) provides an efficient way to assist doctors to interpret fundus images. In a CAD system, retinal vessel (RV) detection is an important step to identify the retinal disease regions automatically and accurately. However, RV de | |
dc.language.iso | English | |
dc.publisher | Institute of Electrical and Electronics Engineers Inc. | |
dc.relation.ispartof | 2017 International Artificial Intelligence and Data Processing Symposium, IDAP 2017 | |
dc.source | IDAP 2017 - International Artificial Intelligence and Data Processing Symposium | |
dc.title | A retinal vessel detection approach using convolution neural network | |
dc.type | Conference Paper | |
dc.identifier.doi | 10.1109/IDAP.2017.8090331 | |
dc.identifier.scopus | 2-s2.0-85039923290 | |