dc.contributor.author | Zhao, Z. | |
dc.contributor.author | Zhang, Y. | |
dc.contributor.author | Comert, Z. | |
dc.contributor.author | Deng, Y. | |
dc.date.accessioned | 2021-12-16T10:12:03Z | |
dc.date.available | 2021-12-16T10:12:03Z | |
dc.date.issued | 2019 | |
dc.identifier.issn | 1664042X | |
dc.identifier.uri | https://doi.org/10.3389/fphys.2019.00255 | |
dc.identifier.uri | http://dspace.beu.edu.tr:8080/xmlui/handle/20.500.12643/12954 | |
dc.description.abstract | Background: Electronic fetal monitoring (EFM) is widely applied as a routine diagnostic tool by clinicians using fetal heart rate (FHR) signals to prevent fetal hypoxia. However, visual interpretation of the FHR usually leads to significant inter-observer | |
dc.description.sponsorship | Hangzhou Dianzi University, HDU; Science and Technology Department of Zhejiang Province: 2016C33079, 2017C31046 | |
dc.language.iso | English | |
dc.publisher | Frontiers Media S.A. | |
dc.rights | All Open Access, Gold, Green | |
dc.source | Frontiers in Physiology | |
dc.title | Computer-aided diagnosis system of fetal hypoxia incorporating recurrence plot with convolutional neural network | |
dc.type | Article | |
dc.identifier.issue | MAR | |
dc.identifier.doi | 10.3389/fphys.2019.00255 | |
dc.identifier.scopus | 2-s2.0-85066440932 | |
dc.identifier.volume | 10 | |