Show simple item record

dc.contributor.authorZhao, Z.
dc.contributor.authorZhang, Y.
dc.contributor.authorComert, Z.
dc.contributor.authorDeng, Y.
dc.date.accessioned2021-12-16T10:12:03Z
dc.date.available2021-12-16T10:12:03Z
dc.date.issued2019
dc.identifier.issn1664042X
dc.identifier.urihttps://doi.org/10.3389/fphys.2019.00255
dc.identifier.urihttp://dspace.beu.edu.tr:8080/xmlui/handle/20.500.12643/12954
dc.description.abstractBackground: Electronic fetal monitoring (EFM) is widely applied as a routine diagnostic tool by clinicians using fetal heart rate (FHR) signals to prevent fetal hypoxia. However, visual interpretation of the FHR usually leads to significant inter-observer
dc.description.sponsorshipHangzhou Dianzi University, HDU; Science and Technology Department of Zhejiang Province: 2016C33079, 2017C31046
dc.language.isoEnglish
dc.publisherFrontiers Media S.A.
dc.rightsAll Open Access, Gold, Green
dc.sourceFrontiers in Physiology
dc.titleComputer-aided diagnosis system of fetal hypoxia incorporating recurrence plot with convolutional neural network
dc.typeArticle
dc.identifier.issueMAR
dc.identifier.doi10.3389/fphys.2019.00255
dc.identifier.scopus2-s2.0-85066440932
dc.identifier.volume10


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record