dc.contributor.author | Ozturk, O. | |
dc.contributor.author | Yilmazer, R. | |
dc.date.accessioned | 2021-12-16T10:12:00Z | |
dc.date.available | 2021-12-16T10:12:00Z | |
dc.date.issued | 2019 | |
dc.identifier.issn | 25043110 | |
dc.identifier.uri | https://doi.org/10.3390/fractalfract3020016 | |
dc.identifier.uri | http://dspace.beu.edu.tr:8080/xmlui/handle/20.500.12643/12924 | |
dc.description.abstract | The Sonine–Letnikov fractional derivative provides the generalized Leibniz rule and, some singular differential equations with integer order can be transformed into the fractional differential equations. The solutions of these equations obtained by some t | |
dc.language.iso | English | |
dc.publisher | MDPI AG | |
dc.rights | All Open Access, Gold, Green | |
dc.source | Fractal and Fractional | |
dc.title | An application of the Sonine–Letnikov fractional derivative for the radial schrödinger equation | |
dc.type | Article | |
dc.identifier.issue | 2 | |
dc.identifier.startpage | 1 | |
dc.identifier.endpage | 10 | |
dc.identifier.doi | 10.3390/fractalfract3020016 | |
dc.identifier.scopus | 2-s2.0-85089854349 | |
dc.identifier.volume | 3 | |