Show simple item record

dc.contributor.authorCömert, Z.
dc.contributor.authorAkbulut, Y.
dc.contributor.authorAkpinar, M.H.
dc.contributor.authorAlçin, Ö.F.
dc.contributor.authorBudak, U.
dc.contributor.authorAslan, M.
dc.contributor.authorŞengür, A.
dc.date.accessioned2021-12-16T10:11:52Z
dc.date.available2021-12-16T10:11:52Z
dc.date.issued2020
dc.identifier.isbn9780750332798; 9780750332774
dc.identifier.urihttp://dspace.beu.edu.tr:8080/xmlui/handle/20.500.12643/12809
dc.description.abstractThe electrocardiogram (ECG) is a useful method which enables the monitoring of various cardiac conditions, such as arrhythmia and heart rate variability (HRV). ECG beats help to determine various heart failures such as cardiac disease and ventricular tach
dc.language.isoEnglish
dc.publisherInstitute of Physics Publishing
dc.sourceModelling and Analysis of Active Biopotential Signals in Healthcare, Volume 1
dc.titleElectrocardiogram beat classification using deep convolutional neural network techniques
dc.typeBook Chapter
dc.identifier.endpageDec-25
dc.identifier.scopus2-s2.0-85096256069


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record