dc.contributor.author | Cömert, Z. | |
dc.contributor.author | Akbulut, Y. | |
dc.contributor.author | Akpinar, M.H. | |
dc.contributor.author | Alçin, Ö.F. | |
dc.contributor.author | Budak, U. | |
dc.contributor.author | Aslan, M. | |
dc.contributor.author | Şengür, A. | |
dc.date.accessioned | 2021-12-16T10:11:52Z | |
dc.date.available | 2021-12-16T10:11:52Z | |
dc.date.issued | 2020 | |
dc.identifier.isbn | 9780750332798; 9780750332774 | |
dc.identifier.uri | http://dspace.beu.edu.tr:8080/xmlui/handle/20.500.12643/12809 | |
dc.description.abstract | The electrocardiogram (ECG) is a useful method which enables the monitoring of various cardiac conditions, such as arrhythmia and heart rate variability (HRV). ECG beats help to determine various heart failures such as cardiac disease and ventricular tach | |
dc.language.iso | English | |
dc.publisher | Institute of Physics Publishing | |
dc.source | Modelling and Analysis of Active Biopotential Signals in Healthcare, Volume 1 | |
dc.title | Electrocardiogram beat classification using deep convolutional neural network techniques | |
dc.type | Book Chapter | |
dc.identifier.endpage | Dec-25 | |
dc.identifier.scopus | 2-s2.0-85096256069 | |