dc.contributor.author | Sengur, Abdulkadir | |
dc.contributor.author | Guo, Yanhui | |
dc.contributor.author | Budak, Umit | |
dc.contributor.author | Vespa, Lucas J. | |
dc.date.accessioned | 2021-12-16T09:07:31Z | |
dc.date.available | 2021-12-16T09:07:31Z | |
dc.date.issued | 2017 | |
dc.identifier.isbn | 978-1-5386-1880-6 | |
dc.identifier.uri | http://dspace.beu.edu.tr:8080/xmlui/handle/20.500.12643/10406 | |
dc.description.abstract | Computer-aided detection (CAD) provides an efficient way to assist doctors to interpret fundus images. In a CAD system, retinal vessel (RV) detection is an important step to identify the retinal disease regions automatically and accurately. However, RV de | |
dc.language.iso | English | |
dc.publisher | Ieee | |
dc.relation.ispartof | 2017 International Artificial Intelligence and Data Processing Symposium (IDAP) | |
dc.source | 2017 Internatıonal Artıfıcıal Intellıgence And Data Processıng Symposıum (Idap) | |
dc.title | A Retinal Verssel Detection Approach Using Convolution Neural Network | |
dc.type | Proceedings Paper | |
dc.identifier.wos | WOS:000426868700171 | |