Show simple item record

dc.contributor.authorSengur, Abdulkadir
dc.contributor.authorGuo, Yanhui
dc.contributor.authorBudak, Umit
dc.contributor.authorVespa, Lucas J.
dc.date.accessioned2021-12-16T09:07:31Z
dc.date.available2021-12-16T09:07:31Z
dc.date.issued2017
dc.identifier.isbn978-1-5386-1880-6
dc.identifier.urihttp://dspace.beu.edu.tr:8080/xmlui/handle/20.500.12643/10406
dc.description.abstractComputer-aided detection (CAD) provides an efficient way to assist doctors to interpret fundus images. In a CAD system, retinal vessel (RV) detection is an important step to identify the retinal disease regions automatically and accurately. However, RV de
dc.language.isoEnglish
dc.publisherIeee
dc.relation.ispartof2017 International Artificial Intelligence and Data Processing Symposium (IDAP)
dc.source2017 Internatıonal Artıfıcıal Intellıgence And Data Processıng Symposıum (Idap)
dc.titleA Retinal Verssel Detection Approach Using Convolution Neural Network
dc.typeProceedings Paper
dc.identifier.wosWOS:000426868700171


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record