Show simple item record

dc.contributor.authorGuo, Yanhui
dc.contributor.authorBudak, Umit
dc.contributor.authorVespa, Lucas J.
dc.contributor.authorKhorasani, Elham
dc.contributor.authorSengur, Abdulkadir
dc.date.accessioned16/12/21 12:07
dc.date.available16/12/21 12:07
dc.date.issued2018
dc.identifier.issn0263-2241
dc.identifier.urihttp://dspace.beu.edu.tr:8080/xmlui/handle/20.500.12643/10225
dc.identifier.urihttps://doi.org/10.1016/j.measurement.2018.05.003
dc.description.abstractComputer-aided detection (CAD) provides an efficient way to assist doctors to interpret fundus images. In a CAD system, retinal vessel (RV) detection is an important step to identify the retinal disease regions automatically and accurately. However, RV de
dc.language.isoEnglish
dc.publisherElsevıer Scı Ltd
dc.sourceMeasurement
dc.titleA retinal vessel detection approach using convolution neural network with reinforcement sample learning strategy
dc.typeArticle
dc.identifier.startpage586
dc.identifier.endpage591
dc.identifier.doi10.1016/j.measurement.2018.05.003
dc.identifier.wosWOS:000436642500065
dc.identifier.volume125


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record