dc.contributor.author | Guo, Yanhui | |
dc.contributor.author | Budak, Umit | |
dc.contributor.author | Vespa, Lucas J. | |
dc.contributor.author | Khorasani, Elham | |
dc.contributor.author | Sengur, Abdulkadir | |
dc.date.accessioned | 16/12/21 12:07 | |
dc.date.available | 16/12/21 12:07 | |
dc.date.issued | 2018 | |
dc.identifier.issn | 0263-2241 | |
dc.identifier.uri | http://dspace.beu.edu.tr:8080/xmlui/handle/20.500.12643/10225 | |
dc.identifier.uri | https://doi.org/10.1016/j.measurement.2018.05.003 | |
dc.description.abstract | Computer-aided detection (CAD) provides an efficient way to assist doctors to interpret fundus images. In a CAD system, retinal vessel (RV) detection is an important step to identify the retinal disease regions automatically and accurately. However, RV de | |
dc.language.iso | English | |
dc.publisher | Elsevıer Scı Ltd | |
dc.source | Measurement | |
dc.title | A retinal vessel detection approach using convolution neural network with reinforcement sample learning strategy | |
dc.type | Article | |
dc.identifier.startpage | 586 | |
dc.identifier.endpage | 591 | |
dc.identifier.doi | 10.1016/j.measurement.2018.05.003 | |
dc.identifier.wos | WOS:000436642500065 | |
dc.identifier.volume | 125 | |