dc.contributor.author | Guo, Yanhui | |
dc.contributor.author | Budak, Umit | |
dc.contributor.author | Sengur, Abdulkadir | |
dc.date.accessioned | 16/12/21 12:07 | |
dc.date.available | 16/12/21 12:07 | |
dc.date.issued | 2018 | |
dc.identifier.issn | 0169-2607 | |
dc.identifier.uri | http://dspace.beu.edu.tr:8080/xmlui/handle/20.500.12643/10207 | |
dc.identifier.uri | https://doi.org/10.1016/j.cmpb.2018.10.021 | |
dc.description.abstract | Background and objective: Computer aided detection (CAD) offers an efficient way to assist doctors to interpret fundus images. In a CAD system, retinal vessel (RV) detection is a crucial step to identify the retinal disease regions. However, RV detection | |
dc.language.iso | English | |
dc.publisher | Elsevıer Ireland Ltd | |
dc.source | Computer Methods And Programs In Bıomedıcıne | |
dc.title | A novel retinal vessel detection approach based on multiple deep convolution neural networks | |
dc.type | Article | |
dc.identifier.startpage | 43 | |
dc.identifier.endpage | 48 | |
dc.identifier.doi | 10.1016/j.cmpb.2018.10.021 | |
dc.identifier.wos | WOS:000451903100006 | |
dc.identifier.volume | 167 | |