• Login
    View Item 
    •   DSpace Home
    • 6-ULUSAL ve ULUSLARARASI İNDEKSLERDE B.E.Ü. YAYINLARI
    • 01) WOS İndeksli Yayınlar Koleksiyonu
    • View Item
    •   DSpace Home
    • 6-ULUSAL ve ULUSLARARASI İNDEKSLERDE B.E.Ü. YAYINLARI
    • 01) WOS İndeksli Yayınlar Koleksiyonu
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    DCCMED-Net: Densely connected and concatenated multi Encoder-Decoder CNNs for retinal vessel extraction from fundus images

    Thumbnail
    Date
    2020
    Author
    Budak, Umit
    Comert, Zafer
    Cibuk, Musa
    Sengur, Abdulkadir
    Metadata
    Show full item record
    Abstract
    Recent studies have shown that convolutional neural networks (CNNs) can be more accurate, efficient and even deeper on their training if they include direct connections from the layers close to the input to those close to the output in order to transfer a
    URI
    http://dspace.beu.edu.tr:8080/xmlui/handle/20.500.12643/10048
    https://doi.org/10.1016/j.mehy.2019.109426
    Collections
    • 01) WOS İndeksli Yayınlar Koleksiyonu [1011]
    • 02) Scopus İndeksli Yayınlar Koleksiyonu [895]





    Creative Commons License
    DSpace@BEU by Bitlis Eren University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     




    | Yönerge | Rehber | İletişim |

    sherpa/romeo

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Type

    My Account

    LoginRegister

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV