• Login
    View Item 
    •   DSpace Home
    • 2-DERGİLER
    • 03) Bitlis Eren Üniversitesi Fen Bilimleri Dergisi
    • Cilt 14, Sayı 3 (2025)
    • View Item
    •   DSpace Home
    • 2-DERGİLER
    • 03) Bitlis Eren Üniversitesi Fen Bilimleri Dergisi
    • Cilt 14, Sayı 3 (2025)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Toward a Safer and Greener Future: Reliable Aqueous Ammonium-Ion Batteries with LiMnO₂ Cathodes

    Thumbnail
    View/Open
    Tam Metin/Full Text (948.6Kb)
    Date
    2025-09-30
    Author
    Tekin, Burak
    Uçan, Melisa
    ōzgenç, Dilara
    Metadata
    Show full item record
    Abstract
    Ammonium-ion-based energy storage systems have gained attention as a sustainable alternative for efficient charge storage. In this study, LiMnO₂ is explored for the first time as a cathode material in an aqueous ammonium-ion battery using a 2M (NH₄)₂SO₄ electrolyte. XRD analysis confirms the formation of phase-pure, highly crystalline orthorhombic LiMnO₂, while SEM imaging reveals a nanorod morphology that enhances ion transport. Cyclic voltammetry identifies two distinct charge storage mechanisms: NH₄⁺ insertion/extraction and surface-controlled redox reactions, with oxidation peaks at 0.89 V and 0.72 V vs. Ag/AgCl and reduction peaks at 0.53 V and 0.28 V vs. Ag/AgCl. Galvanostatic charge-discharge testing demonstrates an initial discharge capacity of ~60 mAh/g at 1C, stabilizing at ~50 mAh/g after the second cycle and maintaining excellent capacity retention over 130 cycles. The stable electrochemical performance suggests that LiMnO₂ undergoes minimal structural degradation, while the mildly acidic (NH₄)₂SO₄ electrolyte effectively mitigates Mn dissolution. Electrochemical impedance spectroscopy reveals a moderate increase in charge transfer resistance (Rct) from 135 Ω to ~200 Ω after cycling, indicating stable interfacial kinetics. The successful demonstration of LiMnO₂ as a hosting material in an aqueous ammonium-ion battery highlights its potential for next-generation energy storage applications.
    URI
    http://dspace.beu.edu.tr:8080/xmlui/handle/123456789/16518
    Collections
    • Cilt 14, Sayı 3 (2025) [40]





    Creative Commons License
    DSpace@BEU by Bitlis Eren University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     




    | Yönerge | Rehber | İletişim |

    sherpa/romeo

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Type

    My Account

    LoginRegister

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV