• Login
    View Item 
    •   DSpace Home
    • 2-DERGİLER
    • 03) Bitlis Eren Üniversitesi Fen Bilimleri Dergisi
    • Cilt 13, Sayı 4 (2024)
    • View Item
    •   DSpace Home
    • 2-DERGİLER
    • 03) Bitlis Eren Üniversitesi Fen Bilimleri Dergisi
    • Cilt 13, Sayı 4 (2024)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Face Recognition Using the Subspace and Deep Learning Algorithms for Cases of Sufficient and Insufficient Data

    Thumbnail
    View/Open
    Tam Metin/Full Text (703.7Kb)
    Date
    2024
    Author
    Serkan, KESER
    Metadata
    Show full item record
    Abstract
    In face recognition, the distance criterion significantly influences the recognition rate. Misclassified test signals can be accurately reassigned to the correct class using various distance measures and the nearest neighbor algorithm. This study uniquely explores the recognition performance of DCVA, Fisherface subspace classifiers, and Convolutional Neural Network (CNN) in face recognition, an aspect not thoroughly explored in the literature. Accordingly, this study introduces a Discriminative Common Vector-based (DCVA) algorithm utilizing various distance measures for face recognition for the first time. Additionally, the Fisherface-based algorithm uses different distance measures and nearest neighbors. Experiments were conducted on three different face databases. The images were downsampled to simulate both sufficient and insufficient data conditions. Experimental results indicate that the Correlation distance measure generally outperforms the Euclidean distance for the DCVA and Fisherface-KNN algorithms under both data conditions. The Fisherface-KNN algorithm surpasses the classical Fisherface in performance for various distance measures and nearest neighbor numbers and yields better recognition rates than the DCVA algorithm in sufficient data conditions. Moreover, while DCVA and Fisherface-KNN achieved superior results for two smaller face databases, CNN demonstrated better performance for larger databases.
    URI
    http://dspace.beu.edu.tr:8080/xmlui/handle/123456789/15702
    Collections
    • Cilt 13, Sayı 4 (2024) [38]





    Creative Commons License
    DSpace@BEU by Bitlis Eren University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     




    | Yönerge | Rehber | İletişim |

    sherpa/romeo

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Type

    My Account

    LoginRegister

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV