• Login
    View Item 
    •   DSpace Home
    • 2-DERGİLER
    • 03) Bitlis Eren Üniversitesi Fen Bilimleri Dergisi
    • Cilt 13, Sayı 4 (2024)
    • View Item
    •   DSpace Home
    • 2-DERGİLER
    • 03) Bitlis Eren Üniversitesi Fen Bilimleri Dergisi
    • Cilt 13, Sayı 4 (2024)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Evaluation of Recycled Steel Fiber Effect on Concrete Performance Using Artificial Intelligence Technique

    Thumbnail
    View/Open
    Tam Metin/Full Text (1.039Mb)
    Date
    2024
    Author
    Şevin, EKMEN
    Metadata
    Show full item record
    Abstract
    Reusing waste materials is critical for sustainability and preventing adverse impacts on human life and the environment. Waste vehicle tires have become a big problem due to high consumption. It is possible to separate waste tires into different materials through technological means. Recycled steel fiber is a material obtained from these tires, and various studies have been conducted on its use in concrete. In addition to the geometric properties, such as the length and diameter, the percentage of steel fiber also affects the strength of concrete. In this study, the effect of recycled steel fiber on concrete's compressive and flexural strength values was estimated using artificial intelligence functions with high statistical significance. The relationship between the strength results and the recycled steel fiber properties was determined using literature data. The model's accuracy was demonstrated by comparing the obtained compressive and flexural strengths with the laboratory results. Thanks to the model with a high correlation coefficient created as a result of the study, the effect of recycled steel fiber on concrete performance as an alternative to laborious laboratory tests can be predicted with artificial intelligence-supported functions. With the proposed neural network method, R2 values of 0.83 for compressive strength measurements and 0.96 for flexural strength measurements were obtained. Based on the findings, it is concluded that the recycled steel fiber-reinforced concrete parameters can be well represented by artificial neural networks, and the presented model can be used as a good alternative to laboratory studies for further research.
    URI
    http://dspace.beu.edu.tr:8080/xmlui/handle/123456789/15695
    Collections
    • Cilt 13, Sayı 4 (2024) [38]





    Creative Commons License
    DSpace@BEU by Bitlis Eren University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     




    | Yönerge | Rehber | İletişim |

    sherpa/romeo

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Type

    My Account

    LoginRegister

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV