GELİŞMİŞ ÖZELLİK MÜHENDİSLİĞİ VE MAKİNE ÖĞRENİMİ İLE İSTANBUL DEPREMİ RİSK ANALİZİ
Abstract
İstanbul'un coğrafi konumu onu aktif fay hatları üzerinde konumlandırmakta ve depreme yatkın hale getirmektedir. Bölgenin jeolojik özellikleri ve nüfus yoğunluğu, olası bir depremin sosyal ve ekonomik sonuçlarını artırmakta ve deprem riskinin önlenmesi ve yönetimi için kapsamlı bir strateji gerektirmektedir. Tarihte görüldüğü üzere, 1509 yılında meydana gelen deprem “Kıyamet-i Suğra” olarak bilinmektedir. Bu depremde 4000 ila 13000 kişi ölmüş, 10000'den fazla kişi yaralanmış ve Osmanlı İmparatorluğu'nun başkenti Konstantinopolis'te yaklaşık 1070 ev yıkılmıştır. Daha yakın bir tarihte, 1999 Kocaeli depreminde İstanbul'da çok sayıda yapı hasar görmüş ve çok sayıda insan hayatını kaybetmiştir. Bu çalışma, Büyük İstanbul Depremi'ndeki olası can kaybını değerlendirmek için makine öğrenimi tekniklerini kullanmaktadır. Tahminlere göre, deprem sırasında en fazla can kaybının hangi bölgelerde yaşanacağının belirlenmesi, bu bölgelerde önceden önlem alınması, olası İstanbul depremi için risk yönetim planlarının oluşturulması ve acil durum taktiklerinin geliştirilmesi amaçlanmaktadır. Çalışmada Rastgele Orman Regresyonu (RF), Doğrusal Regresyon (LR), Aşırı Gradyan Artırma (XGBoost), Destek Vektör Makinesi (SVM), Karar Ağacı Regresyonu (DT), Ekstra Ağaçlar (ET), Kategorik Artırma (CatBoost) ve Kısıtlı Aşırı Öğrenme Makinesi (CELM) gibi tahmin modelleri kullanılmış ve aralarındaki ilişkiler incelenmiştir. LR modelinin kullanılan diğer modellere kıyasla daha etkin olduğu gözlemlenmiştir. mRMR, Boruta ve Karşılıklı Bilgi (MI) yöntemleri özelliklerin daha verimli seçilmesi için kullanılmıştır. Karar mekanizmalarını aydınlatmak için Açıklanabilir Yapay Zeka olarak Shapley Toplamalı Açıklamalar (SHAP) analizi kullanılmıştır. Çalışma, deprem riskine karşı afet yönetimi stratejileri ve önlemlerine odaklanarak İstanbul'da can ve mal kaybını en aza indirecek model ve yöntemleri değerlendirmektedir.
Collections

DSpace@BEU by Bitlis Eren University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..