Show simple item record

dc.contributor.authorKARAKUZULU, Cihan
dc.contributor.authorGÜMÜŞ, İbrahim Halil
dc.contributor.authorGÜLDAL, Serkan
dc.contributor.authorYAVAŞ, Mustafa
dc.date.accessioned2024-04-17T12:10:19Z
dc.date.available2024-04-17T12:10:19Z
dc.date.issued2023
dc.identifier.issn2147-3188
dc.identifier.urihttp://dspace.beu.edu.tr:8080/xmlui/handle/123456789/14806
dc.description.abstractPrincipal Component Analysis is a method for reducing the dimensionality of datasets while also limiting information loss. It accomplishes this by producing uncorrelated variables that maximize variance one after the other. The accepted criterion for evaluating a Principal Component’s (PC) performance is 𝜆�𝑗� 𝑡�𝑟�(𝑺�) where 𝑡�𝑟�(𝑺�) indicates the trace of the covariance matrix S. It is standard procedure to determine how many PCs should be maintained using a specified total variance. In this study, the diagonal elements of the covariance matrix are used instead of the eigenvalues to determine how many PCs need to be considered to obtain the defined threshold of the total variance. For this, an approach which uses one of the important theorems of majorization theory is proposed. Based on the tests, this approach lowers computational costs.tr_TR
dc.language.isoEnglishtr_TR
dc.publisherBitlis Eren Üniversitesitr_TR
dc.rightsinfo:eu-repo/semantics/openAccesstr_TR
dc.subjectPrincipal component analysistr_TR
dc.subjectMajorization theorytr_TR
dc.subjectSchur’s theoremtr_TR
dc.subjectPositive semidefinite matricestr_TR
dc.subjectEigenvaluestr_TR
dc.titleDetermining The Number of Principal Components with Schur's Theorem in Principal Component Analysistr_TR
dc.typeArticletr_TR
dc.identifier.issue2tr_TR
dc.identifier.startpage299tr_TR
dc.identifier.endpage306tr_TR
dc.relation.journalBitlis Eren Üniversitesi Fen Bilimleri Dergisitr_TR
dc.identifier.volume12tr_TR


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record