• Login
    View Item 
    •   DSpace Home
    • 2-DERGİLER
    • 03) Bitlis Eren Üniversitesi Fen Bilimleri Dergisi
    • Cilt 11, Sayı 3 (2022)
    • View Item
    •   DSpace Home
    • 2-DERGİLER
    • 03) Bitlis Eren Üniversitesi Fen Bilimleri Dergisi
    • Cilt 11, Sayı 3 (2022)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Residual Stress Measurement of a Single-step Sintered Planar Anode Supported SC-SOFC Using Fluorescence Spectroscopy

    Thumbnail
    View/Open
    Tam Metin/Full Text (903.0Kb)
    Date
    2022
    Author
    SAYAN, Yunus
    KİM, Jung-Sik
    WU, Houzheng
    Metadata
    Show full item record
    Abstract
    The fluorescence spectroscopy technique was used to measure the residual stress between the cathode and electrolyte of an anode supported planar single-chamber solid oxide fuel cell. The cell was made of (NiO-CGO): (CGO): (LSCF-CGO), as anode:electrolyte:cathode and the test was carried out after sintering at room temperature. The measured stress between these layers arises from the sintering stress caused by differential shrinkage from layers during sintering and the thermal expansion co-efficient mismatch between the layers during cooling. Therefore, the residual stress in the cathode and electrolyte layer of the cell due to co-efficient of thermal expansion mismatch during cooling was calculated analytically so as to find sintering stress. According to findings a maximum compressive residual stress of 1084 MPa occurred at the place contiguous to electrolyte layer. The estimated residual stresses in the cell’s cathode and electrolyte layer owing to CTE mismatch for the duration of cooling was calculated as -324 MPa and 15.96 MPa, respectfully. Furthermore, total mean residual compressive stress between cathode and electrolyte was obtained from fluorescence spectroscopy as -703.795. Thus, the main contribution of this residual stress is the stress growth during sintering (-395.755 MPa) due to different shrinkage behavior of adjacent layers.
    URI
    http://dspace.beu.edu.tr:8080/xmlui/handle/123456789/14716
    Collections
    • Cilt 11, Sayı 3 (2022) [22]





    Creative Commons License
    DSpace@BEU by Bitlis Eren University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     




    | Yönerge | Rehber | İletişim |

    sherpa/romeo

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Type

    My Account

    LoginRegister

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV