• Login
    View Item 
    •   DSpace Home
    • 2-DERGİLER
    • 03) Bitlis Eren Üniversitesi Fen Bilimleri Dergisi
    • Cilt 11, Sayı 3 (2022)
    • View Item
    •   DSpace Home
    • 2-DERGİLER
    • 03) Bitlis Eren Üniversitesi Fen Bilimleri Dergisi
    • Cilt 11, Sayı 3 (2022)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Effect of Silane-Coated SiO2 Nanoparticles on the Hardness Values of Glass FRP Composites

    Thumbnail
    View/Open
    Tam Metin/Full Text (1.136Mb)
    Date
    2022
    Author
    UZAY, Çağrı
    KAMER, M. Safa
    Metadata
    Show full item record
    Abstract
    In this study, silane-coated SiO2 nanoparticles (as-received) were used as secondary reinforcement for glass fiber-reinforced polymer (FRP) composites, and the microhardness values of the developed composites were investigated. The nanoparticles were dispersed within the polymer epoxy at 1.5 and 3 wt.% ratios, respectively. Two different types of silane coating were used that were KH550 and KH570. The mixture of the epoxy resin and nanoparticles were subjected to ultrasonic homogenization to achieve a fine dispersibility of the SiO2 nanoparticles. Then the matrix was prepared with a suitable hardener at a weight ratio of 100:25. The strengthened polymer matrix was reinforced by woven glass fiber fabrics (primary reinforcing element). The vacuum bag method was applied to produce silane-coated nano SiO2 filled glass FRP composites. A digital microhardness testing device was used to determine the Vickers hardness values. While the pure glass/epoxy composite has resulted in a hardness of 20.69 HV, the maximum hardness value was recorded as 36.56 HV and it was obtained with 3 wt.% KH550SiO2 filled glass/epoxy. The incorporation of silane-coated SiO2 nanoparticles has provided dramatic enhancements in terms of microhardness, approximately from 28 to 77%. The microscopic examination was also conducted via an optical microscope and the images were found helpful to explain the test results. Therefore, the findings of this study have shown that silane-coated nano SiO2 filler can be used as secondary reinforcement where high hardness and better wear resistance are desired for glass/epoxy composite applications.
    URI
    http://dspace.beu.edu.tr:8080/xmlui/handle/123456789/14688
    Collections
    • Cilt 11, Sayı 3 (2022) [22]





    Creative Commons License
    DSpace@BEU by Bitlis Eren University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     




    | Yönerge | Rehber | İletişim |

    sherpa/romeo

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Type

    My Account

    LoginRegister

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV