𝒉- Stability of Functional Dynamic Equations on Time Scales by Alternative Variation of Parameters
dc.contributor.author | KOYUNCUOĞLU, Halis Can | |
dc.contributor.author | TURHAN TURAN, Nezihe | |
dc.date.accessioned | 2024-03-26T06:27:13Z | |
dc.date.available | 2024-03-26T06:27:13Z | |
dc.date.issued | 2022 | |
dc.identifier.issn | 2147-3188 | |
dc.identifier.uri | http://dspace.beu.edu.tr:8080/xmlui/handle/123456789/14619 | |
dc.description.abstract | In this paper, we concentrate on nonlinear functional dynamic equations of the form 𝒙�∆(𝒕�) = 𝒂�(𝒕�)𝒙�(𝒕�) +𝒇�(𝒕�,𝒙�(𝒕�)), 𝒕� ∈ 𝕋� on time scales and study ℎ-stability, which implies uniform exponential stability, uniform Lipschitz stability, or uniform stability in particular cases. In our analysis, we use an alternative variation of parameters, which enables us to focus on a larger class of equations since the dynamic equations under the spotlight are not necessarily regressive. Also, we establish a linkage between uniform boundedness and ℎ-stability notions for solutions of dynamic equations under sufficient conditions in addition to our stability results. | tr_TR |
dc.language.iso | English | tr_TR |
dc.publisher | Bitlis Eren Üniversitesi | tr_TR |
dc.rights | info:eu-repo/semantics/openAccess | tr_TR |
dc.subject | ℎ-Stability | tr_TR |
dc.subject | Time scale | tr_TR |
dc.subject | Uniform boundedness | tr_TR |
dc.subject | Alternative variation parameters | tr_TR |
dc.title | 𝒉- Stability of Functional Dynamic Equations on Time Scales by Alternative Variation of Parameters | tr_TR |
dc.type | Article | tr_TR |
dc.identifier.issue | 2 | tr_TR |
dc.identifier.startpage | 459 | tr_TR |
dc.identifier.endpage | 468 | tr_TR |
dc.relation.journal | Bitlis Eren Üniversitesi Fen Bilimleri Dergisi | tr_TR |
dc.identifier.volume | 11 | tr_TR |