Show simple item record

dc.contributor.authorKOYUNCUOĞLU, Halis Can
dc.contributor.authorTURHAN TURAN, Nezihe
dc.date.accessioned2024-03-26T06:27:13Z
dc.date.available2024-03-26T06:27:13Z
dc.date.issued2022
dc.identifier.issn2147-3188
dc.identifier.urihttp://dspace.beu.edu.tr:8080/xmlui/handle/123456789/14619
dc.description.abstractIn this paper, we concentrate on nonlinear functional dynamic equations of the form 𝒙�∆(𝒕�) = 𝒂�(𝒕�)𝒙�(𝒕�) +𝒇�(𝒕�,𝒙�(𝒕�)), 𝒕� ∈ 𝕋� on time scales and study ℎ-stability, which implies uniform exponential stability, uniform Lipschitz stability, or uniform stability in particular cases. In our analysis, we use an alternative variation of parameters, which enables us to focus on a larger class of equations since the dynamic equations under the spotlight are not necessarily regressive. Also, we establish a linkage between uniform boundedness and ℎ-stability notions for solutions of dynamic equations under sufficient conditions in addition to our stability results.tr_TR
dc.language.isoEnglishtr_TR
dc.publisherBitlis Eren Üniversitesitr_TR
dc.rightsinfo:eu-repo/semantics/openAccesstr_TR
dc.subjectℎ-Stabilitytr_TR
dc.subjectTime scaletr_TR
dc.subjectUniform boundednesstr_TR
dc.subjectAlternative variation parameterstr_TR
dc.title𝒉- Stability of Functional Dynamic Equations on Time Scales by Alternative Variation of Parameterstr_TR
dc.typeArticletr_TR
dc.identifier.issue2tr_TR
dc.identifier.startpage459tr_TR
dc.identifier.endpage468tr_TR
dc.relation.journalBitlis Eren Üniversitesi Fen Bilimleri Dergisitr_TR
dc.identifier.volume11tr_TR


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record