Show simple item record

dc.contributor.authorULGEN, Ibrahim
dc.contributor.authorYILMAZ, Bulent
dc.date.accessioned2024-02-05T07:15:25Z
dc.date.available2024-02-05T07:15:25Z
dc.date.issued2019
dc.identifier.issn2146-7706
dc.identifier.urihttp://dspace.beu.edu.tr:8080/xmlui/handle/123456789/13875
dc.description.abstractThe time-dependent Hartree-Fock (TDHF) and density functional theory (DFT) are among the most useful approaches within mean-field theories for studying static and dynamic properties of complex many-body systems in different branches of physics. Despite the fact that they provide a good approximation for the average properties of one-body degrees of freedom, they are known to fail to include quantal fluctuations of collective observables and they do not provide sufficient dissipation of collective motion. In order to incorporate these missing effects the stochastic mean-field (SMF) approach was proposed (Ayik 2008). In the SMF approach a set of stochastic initial one-body densities are evolved. Each stochastic one-body density matrix consists of a set of stochastic Gaussian random numbers that satisfy the first and second moments of collective one-body observables. Recent works indicate that the SMF approach provides a good description of the dynamics of the nuclear systems (Yilmaz et al. 2018; Ayik et al. 2019). In this work, the one-dimensional Fermi-Hubbard model is simulated with the SMF approach by using different distributions such as Gaussian, uniform, bimodal and two-point distributions. The dissipative dynamics are discussed and the predictive power of the SMF approach with different probability distributions are compared with each other and the exact dynamics. As a result it is shown that by considering different distributions, the predictive power of the SMF approach can be improved.tr_TR
dc.language.isoEnglishtr_TR
dc.publisherBitlis Eren Üniversitesitr_TR
dc.rightsinfo:eu-repo/semantics/openAccesstr_TR
dc.subjectMean-Fieldtr_TR
dc.subjectStochastic Mean-Fieldtr_TR
dc.subjectFluctuationtr_TR
dc.subjectDissipationtr_TR
dc.subjectFermi-Hubbard Modeltr_TR
dc.titleDissipative dynamics within stochastic mean-field approachtr_TR
dc.typeArticletr_TR
dc.identifier.issue2tr_TR
dc.identifier.startpage104tr_TR
dc.identifier.endpage108tr_TR
dc.relation.journalBitlis Eren University Journal of Science and Technologytr_TR
dc.identifier.volume9tr_TR


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record