Show simple item record

dc.contributor.authorMETİN KARAKAŞ, Ayşe
dc.date.accessioned2024-02-01T07:33:04Z
dc.date.available2024-02-01T07:33:04Z
dc.date.issued2017
dc.identifier.issn2146-7706
dc.identifier.urihttp://dspace.beu.edu.tr:8080/xmlui/handle/123456789/13819
dc.description.abstractIn this study, methods of copula estimation are used and the temperature measurement data of the four regions located at the same positions in the range of 01.01.2008 - 30.04.2009 was modeled with copula functions. For dependence structures of the data sets, it is calculated Kendall Tau and Spearman Rho values which are nonparametric. Based on this method, parameters of copula are obtained. A clear advantage of the copula-based model is that it allows for maximum-likelihood estimation using all available data. The main aim of the method is to find the parameters that make the likelihood functions get its maximum value. With the help of the maximum-likelihood estimation method, for copula families, it is obtained likelihood values. These values, Akaike information criteria (AIC) are used to determine which copula supplies the suitability for the data set.tr_TR
dc.language.isoEnglishtr_TR
dc.publisherBitlis Eren Üniversitesitr_TR
dc.rightsinfo:eu-repo/semantics/openAccesstr_TR
dc.subjectCopula function,tr_TR
dc.subjectArchimedean copula function,tr_TR
dc.subjectKendall tau,tr_TR
dc.subjectSpearman rho,tr_TR
dc.subjectTemperature,tr_TR
dc.subjectAkaike information criteriatr_TR
dc.titleModelling temperature measurement data by using copula functionstr_TR
dc.typeArticletr_TR
dc.identifier.issue1tr_TR
dc.identifier.startpage27tr_TR
dc.identifier.endpage32tr_TR
dc.relation.journalBitlis Eren University Journal of Science and Technologytr_TR
dc.identifier.volume7tr_TR


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record