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Abstract 

Parkinson’s disease (PD) is the second most widespread neurodegenerative disease 

worldwide. Excessive daytime sleepiness (EDS) significantly correlates with de 

novo PD patients. Identifying predictors is critical for the early detection of disease. 

We investigated clinical and biological markers related to time-dependent variables 

in sleepiness for early detection of PD. Data were obtained from the Parkinson’s 

Progression Markers Initiative study, which evaluates the progression markers in 

patients. The dataset also includes various longitudinal endogenous predictors. The 

measures of EDS were obtained through the Epworth Sleepiness Scale (ESS). The 

random survival forest method, which can deal with multivariate longitudinal 

endogenous predictors, was used to predict the probability of having EDS in PD. The 

rate of having EDS among PD patients was 0.452. The OOB rate was 0.186. The 

VIMP and minimal depth indicated that the most important variables are stai state, 

JLO, and the presence of the ApoE4 Allele. In early PD, EDS is a good indicator of 

the diagnosis of the PD and it increases over time and has associations with several 

predictors.  

 
 

 
1. Introduction 

 

Parkinson’s disease (PD) is one of the most 

widespread age-related neurodegenerative diseases 

worldwide [1]. Although this complex disease is 

defined by its motor symptoms, non-motor symptoms 

are quite common and mostly more visible than motor 

symptoms. Lack of sleep and wakefulness during the 

day are among the most widespread non-motor 

symptoms (NMS). Excessive daytime sleepiness 

(EDS) impacts 16% to 74% of subjects with PD and 

increases with the duration of the disease and severity 

[2]–[4]. This symptom has a negative effect on life 

quality ([2], [5]), and the clinical symptoms of PD 

differ by disease duration, cognitive impairment, 

autonomic dysfunction, gender, age, depression, 
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anxiety, and severe motor symptoms [6]–[8]. EDS is 

a considerably significant variable, especially in 

moderate to advanced PD compared to healthy 

controls (HC) [2], [3].   

The existence of EDS has a negative impact 

on cognitive impairment and the development of a 

higher risk of dementia [9]. The baseline 

characteristics regarding EDS in cohort de novo 

untreated Parkinson patients and HC in the Parkinson 

Progression Markers Initiative (PPMI) [10] 

concluded that there was no significant difference 

between the two groups. EDS was measured with the 

Epworth Sleepiness Scale (ESS) and defined as true 

if ESS ≥ 10. There are few studies to assess EDS in de 

novo PD patients [11]–[13]. Each of them has very 
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small data, with less than 25 de novo PD patients and 

one HC. All of them have the same conclusion: EDS 

does not have a negative impact on untreated PD 

patients. However, more up-to-date studies indicated 

that EDS is a part of NMS [14], [15]. Therefore, the 

uncertainty remains regarding EDS in de novo 

patients. Abbott et al. [16] stated that EDS is one of 

the risk factors for developing PD.  

So far, there have been very few empirically 

published accounts of longitudinal change in EDS in 

PD patients. Tholfsen et al. [17] investigated it in 153 

de novo subjects with PD and concluded that the 

patients with PD had significantly more EDS over 

time. Breen et al. [7] found that the prevalence of EDS 

has risen over time. Amara et al. [18] examined the 

association between clinical, imaging, and biological 

variables and longitudinal changes in EDS over time 

with the comparison of HCs.  No previous studies 

have examined the patient-specific risk of PD related 

to individual longitudinal changes over time. In light 

of this gap, we aimed to characterize the biological 

and clinical factors associated with EDS in PD 

through the investigation of longitudinal trajectories 

amongst patients in the cohort study.  

When the longitudinal and event time 

processes are associated in the dynamic prediction 

context, joint modelling is the most effective way to 

cope with this relationship [19]. Joint models (JM) 

model the longitudinal and event-time outcomes 

simultaneously via shared random effects. The 

method was first developed by Wulfsohn and Tsiatis 

[20] and extended by Henderson [21]. The method is 

investigated in detail with the methodological 

development and advances in [22]. The methodology 

for the incorporation of multivariate longitudinal data 

is extended in [23]–[25]. Due to the complexity of the 

method and the computational burden, the method has 

been limited to only 2-3 longitudinal biomarkers. 

Therefore, this brings us to the dynamic prediction 

with large-dimensional longitudinal predictors: the 

competing risk random survival forest [26], [27]. 

Random forest is a common method applied in many 

disciplines [28], [29]. Random survival forest (RSF) 

is accurately predicts the event risk and has become 

widespread since it has the capability of handling a 

variety of covariates. Nevertheless, this method has 

been unable to incorporate time-dependent predictors. 

Thus, Devaux et al. [30] proposed an alternative way 

to RSF with multivariate longitudinal time-dependent 

covariates.  

This study set out to develop a model for 

individual dynamic prediction of EDS, associated 

with clinical and biological factors in the PPMI 

cohort.  

The rest of the paper is organized as follows: 

Section 2 introduces the material and method, listed 

under two subheadings: the PPMI data and random 

forest for time-dependent predictors. Section 3 

presents results and discussion, and the final section 

concludes the study.  

 

2. Material and Method 

 

2.1. The PPMI Data 

 

The PPMI is a comprehensive observational, 

international, multicenter study that is designed for 

the identification of PD progression biomarkers for 

the improvement of understanding the disease 

etiology and to provide key tools to improve the 

likelihood of success of PD-modifying therapeutic 

trials.  The PPMI aims to provide a wide research 

community with a standardized, longitudinal dataset 

and biosample library. The PPMI cohort includes 168 

de novo PD patients, and they were followed up for 2 

years [10]. Detailed information regarding the study’s 

procedures and inclusion and exclusion criteria is 

available at the PPMI website, https://www.ppmi-

info.org.  The dataset is available upon registering and 

requesting to access data on the aforementioned 

website, and downloaded on April 1, 2023.  

The data are collected at baseline and 

annually thereafter. Patients were evaluated with the 

ESS [31], a measure of EDS, where a maximum score 

of 24 indicates the worst degree of sleepiness. This 

test has a significant test-retest correlation [32]. The 

ESS also has a strong correlation with the sleepiness 

measures in PD [33], [34] and is sensible to switch 

due to an intervention [35]. The patients were 

categorized as having EDS when ESS is greater than 

or equal to 10 and having severe EDS when ESS is 

greater than or equal to 17 [31]. In addition to ESS, 

the patients were assessed with the motor symptoms, 

Movement Disorders Society – Unified Parkinson’s 

Disease Rating Scale (MDS-UPDRS) [36]. Non-

motor symptoms comprise the Montreal Cognitive 

Assessment (MoCA) [37], the Hopkins verbal 

learning test (HVLT) [38], the Benton judgment of 

line orientation test (JLO) [39], the symbol digit 

modalities test (SDMT) [40], the University of 

Pennsylvania smell ID test (UPSIT) [41], the REM  

Sleep Behaviour Disorder Screening Questionnaire 
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(RBDSQ) [42], and the State-Trait-Anxiety Inventory 

(STAI) state and trait sub-scores [43]. 

 

2.2. Method: Random Forest for Time-Dependent 

Predictors  

 

We first consider a dataset of 𝑁 subjects consisting of 

𝑌 the outcome,  ℳ𝑥 an ensemble of 𝑃 time-

independent covariates, and  ℳ𝑦  an ensemble of 𝑄 

time-dependent covariates.  In principal, random 

forest includes an ensemble of 𝐵 trees and aggregated 

to obtain predictions.  

 

2.2.1. The Tree Building 

 

The tree building aims at the recursive partition of the 

individuals into the most homogeneous nodes/groups. 

For each tree, 𝑏 (𝑏 = 1, 2, … , 𝐵) h a bootstrap sample 

from 𝑁 subject is drawn with a replacement. The 

individuals that are excluded by the bootstrap 

comprise the out-of-bag (OOB) sample, 𝑂𝑂𝐵𝑏.  At 

each node 𝑑𝜖𝒟𝑏, the following steps utilizing 𝑁(𝑑) 

are repeated recursively: 

1. A random subset of covariates ℳ(𝑑) =

{ℳ𝑥
(𝑑)

, ℳ𝑦
(𝑑)

} ⊂ {ℳ𝑥, ℳ𝑦} is selected to 

improve accuracy and minimize the 

correlation between trees. The size of ℳ(𝑑) is 

called tuning parameter, mtry.  

2. For each time-dependent variable in ℳ𝑦
(𝑑)

: 

a. The linear mixed effect model proposed by 

Laird and Ware [44] is employed at each node 

𝑑. 

b. An ensemble of ℳ𝑦⋆ 
(𝑑)

 of subject time-fixed 

variables is derived. 

3. New ensemble of candidate variables ℳ⋆
(𝑑)

=

{ℳ𝑥
(𝑑)

, ℳ𝑦⋆ 
(𝑑)

 } is defined.  

4. For each candidate variable 𝑊 ∈ ℳ⋆
(𝑑)

: 

a. A series of splits 𝑐𝑊
(𝑑)

 is built according to the 

values of the variable that leads each time into 

two groups. 

b. The distance between two groups is 

calculated.  

5. The subjects are split into two groups: those 

that maximize the test statistic for survival 

outcomes or those that minimize the test 

statistic for categorical and continuous 

outcomes. The optimal couple is denoted as 

{𝑊0
𝑑 , 𝑐0

𝑑} and this represents the left and right 

daughter nodes, 2𝑑 and 2𝑑 + 1, respectively.  

6. Step 1 to 5 are repeated on the daughter nodes 

till the stopping criteria are met.  

Two stopping criteria to pursue with the 

stopping of a node are defined: nodesize, a minimal 

number of individuals in each of the daughter nodes 

and minsplit, a minimal number of events. Once the 

stopping criteria is met, the node is counted as a 

terminal node or leaf ℎ ∈ ℋ.  

In each leaf, a summary (𝜋ℎ𝑏
) is presented 

utilizing the subjects of the leaf of the tree 𝑏. 

 

2.2.2. Out-of-Bag Individual Prediction of the 

Outcome 

The overall OOB prediction �̂�⋆ for an individual ⋆ is 

found through the tree-based predictions of ⋆ as 

below: 

�̂�⋆ =
1

|𝒪⋆|
∑ �̂�ℎ⋆

𝑏

𝑏∈𝒪⋆

 
 

(1) 

where |𝒪⋆| represents the length of 𝒪⋆ and 

�̂�ℎ⋆
𝑏
 denotes the Aalen-Johansen estimator in leaf ℎ⋆

𝑏 

of the 𝑏. Tree. 

 

2.3. Out-of-Bag Error 

The OOB error measures the difference between the 

observed and predicted values. The Integrated Brier 

score (IBS) between 𝜏1 and 𝜏2 is defined as follows:  

 

  𝑒𝑟𝑟𝑂𝑂𝐵 = ∫
1

𝑁
∑ �̂�𝑖(𝑡){𝟙(𝑇𝑖≤𝑡,𝛿𝑖=𝑘) − �̂�𝑖𝑘(𝑡)}

2
𝑁

𝑖=1

dt
𝜏2

𝜏1

 
 

(2) 

where 𝑇 is the event time, 𝑘 is the cause of 

interest, and �̂� (𝑡) is the estimated weights, that 

considers censoring [45].  

 

2.4. Variable Importance 

The variable importance (VIMP) quantifies the loss 

of predictive performance in case of removal of the 

link between predictor and the response variable [27]. 

Such a link is broken with the permutation of the 

predictors at the individual level for time-independent 

variables and at the observation level for time-

dependent variables. Large VIMP value represents 

good prediction ability for the predictor.  

 

3. Results and Discussion 

 

We aimed to predict the subject probability of having 

EDS in patients with Parkinson’s disease using social, 

demographic, and clinical variables (sex, presence of 

the ApoE4 Allele, and baseline count of 

lymphocytes).  
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The dataset is split into two: training (2/3 of 

subjects) and testing (1/3 of subjects) datasets. The 

random forest is built by specifying the linear mixed 

models for each longitudinal predictor using the 

DynForest function. The outcome objects were the 

event indicator and event time data. For the 

hyperparameters, we chose mtry=7, nodesize=5, 

and minsplit=2. When the type of outcome is 

survival, the Fine&Gray statistic test is used as the 

splitting rule and the cumulative incidence function 

(CIF) as the leaf statistic. The assessment of the 

predictive ability of the model is made with the out-

of-bag error (OOB). When the outcome of interest is 

survival, the OOB error is computed using the 

integrated Brier Score (IBS) [45]. The OOB error for 

the model is obtained from the mean of the subject-

specific OOB error. The computed OOB error from 

the starting time to the maximum of the time-to-event 

is 0.186. The rate of having EDS in 168 Parkinson’s 

patients is 0.452. It means that 76 patients have EDS 

and the rest do not have EDS. 

 

 
Figure 1. Predicted CIF for individual 41 and 162. 

We also predict the outcome for new 

individuals using the trained random forest. Dynamic 

prediction can be made by specifying a prediction 

time, and landmark from which the prediction is 

made. Only the individuals still at risk at the landmark 

time (dashed vertical line, at 4 years) are selected for 

illustration purposes, and subject-specific CIF is 

predicted using dataframe for those who are at risk at 

4 years. Figure 1 displays the CIF of the outcomes of 

individuals 41 and 162. The risk of having the event 

for individual 41 had a rapid rise in year 5. After 8 

years from landmark time, individual 41 has a higher 

probability of having EDS than the other. 

In order to understand the importance of the 

predictors, VIMP statistics are presented in Figure 2. 

Stai state was the most important variable, which has 

the association with having EDS, with an average 

gain in IBS of 5.2%, followed by JLO and ApoE4 

Allele (gains of 3.8% and 2.5%, respectively). In the 

case of correlated variables, the variables may be re-

grouped into dimensions, and the VIMP can be 

calculated at the dimension group level. Figure 3 

shows that 2 non-motor predictors (stai state and stai 

trait) in group 2 attained a mean gain of 8.7%.  

 

 
Figure 2. Importance variable. 
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Figure 3. Grouped importance variable (gVIMP), 

Group1: MOCA, HVLT, JLO, SDMT, UPSIT and 

RBDSQ; Group2: Stai trait and stai state; Group3: ApoE4 

and lymphocyte. 

In order to better understand the tree-building 

process, the minimal depth utilizing large mtry hyper 

parameter is computed and shown by the predictor 

and feature in Figure 4. Stai trait has the lowest 

average minimal depth. The same inference can also 

be seen for the minimal depth plot regarding features. 

The lowest average minimal depth belongs to stai trait 

features. These indicate that the stai predictors are the 

most efficient predictors for splitting the subjects into 

homogenous subgroups. These outcomes can also be 

seen in variable importance plots.  

 

 
Figure 4. Average minimal depth level by predictor 

(upper) and feature (lower). 

We computed the individual dynamic 

predictions accounting for multiple longitudinal 

predictors through the extended random survival 

forest method in order to deal with time-dependent 

predictors. The DynForest R package, which is a user-

friendly R package and easy-to-use random forest 

methodology, is utilized to achieve this [46]. 

Moreover, the importance of the variables using 
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VIMP, grouped-VIMP and minimal depth are 

provided.  

Some studies have investigated the EDS 

effect in PD. Feng et al. [47] provided a systematic 

review and meta-analysis related to EDS in PD. They 

found that approximately 35.1% of subjects with PD 

had EDS, and EDS in PD can have association with 

severe PD. To the best of our knowledge, so far, 

limited studies have given sufficient consideration to 

the impact of imaging and biological markers on EDS 

change over time in PD in Amara et al. [18], Höglund 

et al. [48], Liu et al. [49], and Pino et al. [50]. They 

considered the longitudinal change of EDS in patients 

with PD.  Höglund et al. [48] investigated EDS over 

time associated with PD symptoms. The authors used 

linear mixed effect models and concluded that EDS 

did not worsen over the follow-up period and that 

EDS is a complex nonmotor symptom. This result 

contradicts ours. On the other hand, Liu et al. [49] and 

Pino et al. [50] aimed to investigate the effect of sleep 

problems on longitudinal changes in motor and non-

motor symptoms among patients with PD. They both 

used linear mixed effect, and Liu et al. [49] 

additionally employed Cox PH models and concluded 

that patients with PD and have sleep problems 

progress faster symptoms of more aggressive types of 

PD. In addition to this, using more advanced methods, 

Amara et al. [18] implemented the random survival 

forest method and concluded that EDS had a 

significant rise over time and had associations with 

various clinical predictors in early PD. This result is 

supported by our study. Nonetheless, our study has 

some advantages (i) it used all available information; 

(ii) it has a simultaneous analysis of the longitudinal 

and event time processes; (iii) it allows for 

complication associations between repeated 

measurements and event time; (iv) it allows for high- 

dimensional data.  

 

4. Conclusion and Suggestions 

 

The aim of this study was to investigate individual 

dynamic prediction of EDS (predict the event - having 

EDS) with multiple longitudinal time-dependent 

variables in PD. We identified the most significant 

clinical markers of rate of progression so that this will 

benefit clinical care and the testing of new treatments. 

We also concluded that EDS has a significant effect 

on patients with PD. Overall, EDS is a clinical 

manifestation in de novo PD patients. Moreover, this 

study indicates that many factors, such as stai state, 

JLO and ApoE4 Allele are the most important 

variables in EDS in de novo PD patients. 

Understanding the clinical features of EDS is 

important to identify early PD and improve life 

quality.  

The prediction model could be improved by 

considering discrete longitudinal markers (i.e., binary 

or categorical). Generalized estimated equations can 

be used instead of generalized mixed models.   
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