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Abstract 

In this study, our aim is to predict the compositions of zinc electroplating bath using 

machine learning method and optimize the organic additives with NSGA-II (Non-

dominated Sorting Genetic Algorithm) optimization algorithm. Mask RCNN was 

utilized to classify the coated plates according to their appearance. The names of 

classes were defined as “Full Bright”, “Full Fail”, “HCD Fail” and “LCD Fail”. The 

intersection over union (IoU) values of the Mask RCNN model were determined in 

the range of 93–97%. Machine learning algorithms, MLP, SVR, XGB, GP, RF, were 

trained using the classification of the coated panels whose classes were detected by 

the Mask RCNN. In the machine learning training, the additives in the 

electrodeposition bath were specified as input and the classes of the coated panels as 

output. From the trained models, RF gave the highest F1 scores for all the classes. 

The F1 scores of RF model for “Full Bright”, “Full Fail”, “HCD Fail” and “LCD 

Fail” are 0.95, 0.91, 1 and 0.80 respectively. Genetic algorithm (NSGA-II) was used 

to optimize the compositions of the bath. The trained RF models for all the classes 

were utilized as the objective function. The ranges of organic additives, which should 

be used for all the classes in the electrodeposition bath, were determined. 
 

 
1. Introduction 

 

Electrodeposition is extensively utilized in the world 

because it is cheap and can be applied to the wide 

surfaces easily [1]. Many metallic coatings such as 

nickel, chrome, zinc, bronze, brass, copper and etc. 

can be performed using this method [2]–[6]. Zinc 

coating among the metallic coatings is the most vastly 

used method to protect the steels from the corrosion 

[7]. Two types of zinc coating baths are present. One 

is acidic and the other is alkaline zinc electroplating 

bath [7], [8]. Many parameters are present to perform 

the coating in the electrodeposition bath [8]. Except 

for parameters such as temperature and current, the 

other parameters are constantly changing during 

operation. Hence, they should be kept under control 

to ensure the stability of the electroplating bath. 
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Organic additives are very important factor to 

enhance the physical properties (brightness, 

throwing/covering power and etc.) of the coating [9]. 

In the industry, the lack of organic additives [10] and 

the other needs in the electroplating bath is estimated 

by the engineer using the Hull-cell panels or 

examining the coated parts. The defects formed on the 

surface of the panels during the coating are closely 

related to the deficiencies in the electroplating bath. 

Thanks to this relationship, the experienced engineer 

can solve the problem of the electroplating bath by 

examining the surface of the coated panels. 

 Machine learning principles have widely 

been used to detect objects and faces in many areas 

[11]. Especially, material scientists have utilized 

these methods to identify surface properties of the 

materials. For instance, in order to estimate the 
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adhesion force of the materials to the sublayer by 

utilizing a scratch test technique (DIN EN ISO 

20502:2016–11) [12]. Wang and et al. also used CNN 

technique to estimate the factors influencing particles 

in plasma spray [13]. The method is a promising 

method which can be used to estimate the content of 

electroplating bath in the field of the electroplating 

process. Katırcı et al. utilized Mask RCNN method to 

extract the related part from the whole image and 

machine learning method was used to predict the 

quality of the Hull-cell panel [1]. Also, the same 

group used machine learning algorithms such as MLP 

(Multilayer perceptron), SVR (Support vector 

machine regression) and XGB (eXtreme gradient 

boosting) to estimate ZnNi thickness and Ni% ZnNi 

alloy coating [14]. 

The aim of this study is to adapt the artificial 

intelligence methods to the electroplating process to 

keep the variable parameters under control during 

operation. In this study, the Mask RCNN technique 

was implemented to define the deposited panels 

according to the appearance of the coating. To 

measure the additives in the electrocoating bath 

affecting the view of the coating, machine learning 

algorithms were used. Genetic algorithm (NSGA-II) 

was implemented to optimize the amount of organic 

additives in the working electroplating bath. 

 

2. Material and Method 

 

Zn electrodeposition was carried out utilizing a 

Thurlby 30V 1A-model DC model direct-current 

generator. The composition of the basic Zn 

electroplating bath is presented in Table 1 and named 

basic-Zn. The pH of the bath was maintained at 4.5. 

All electroplating was performed in the room 

temperature. KOH was added to dissolve ZnO and to 

rise the conductivity of the Zn electroplating bath. 

The additives were included to the bath to enhance the 

surface properties, such as brightness, color and etc., 

of the coating. Potassium silicate (PS), imidazole-

epichlorohydrin (IME) and mirapol (MP) were used 

as carrier. Carriers ensure that the coating thickness is 

homogeneous [15]. The orthochloro benzaldehyde 

chloride (OCB) and benzyl pyridinium 3-carboxylate 

(BPC) chemicals were used as a brightener. The 

brighteners reduce the crystal size to increase in the 

brightness of the coating [16]. Hull-cell was used to 

deposit the panels; whose surface area is 1 dm2 

(Figure 1). 

 

 

 

 

Table 1. The basic Zn electroplating bath 

Chemicals Quantity (g/L) 

ZnO 12.5 

KOH 170 

K2CO3 50 

 

 

Figure 1: Hull-cell (left) and panels (right). 

 

The images of the plates were taken to 

generate the dataset for training and test. The code 

implementations were performed on Anaconda 

platform and Truba HPC system.  Python language 

was used to write the codes. Sklearn libraries were 

utilized for machine learning (ML). Mask RCNN 

codes were fitted to this study. Tensorflow 1.14 and 

keras 2.2.4 libraries were utilized in the Mask RCNN. 

The images of the Zn deposited plates were acquired 

and resized to 128*128 pixel. The via-2.0.10 software 

and polygon frame were utilized for labeling. The 

parts within the electrodeposition bath were labeled 

and classified according to the appearance of the 

panels. Four classes were used for classification. 

These are “Full Bright”, “Full Fail”, “LCD Fail” and 

“HCD Fail”. “Full Bright” indicates that the entire 

surface of the coating is bright, “Full Fail” indicates 

that the entire surface is either mat or has defects. 

“HCD Fail” and “LCD Fail” depict defects in HCD 

(High Current Density) and LCD (Low Current 

Density) regions respectively. The experimental 

studies were performed in 38 different electroplating 

baths to acquire the images from the deposited panels. 

The images were augmented with the image 

processing techniques such as blur, brightness, 

contrast, gaussian blur, median, salt and pepper noise, 

saturation and sharpen. For the test dataset, 114 “Full 

Bright”, 76 “Full Fail”, 114 “LCD Fail” and 114 

“HCD Fail” images were generated. The Zn 

electrodeposition bath having the different content 

was trained versus the class of the coated panels using 

MLP (Multi-layer perceptron), SVC (Support vector 
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classifier), XGB (eXtreme gradient boosting), GP 

(Gaussian process) and RF (Random forest) machine 

learning algorithms. The achievement of the models 

was measured with F1 score. The leave-one-out (loo) 

method was utilized for cross-validation because it is 

favored for small dataset [17]. In this technique, one 

data is extracted from the dataset and the rest of data 

is utilized for training. Afterwards, the extracted data 

is predicted by the model trained. This event is 

reiterated for each data. The hyperparameters 

providing the best model were investigated using the 

grid search technique. The flowchart of the whole 

study is summarized in Figure 2.

 

 

Figure 2. The flowchart of the whole study. 

 

 

3. Results and Discussion 

 

3.1. MASK RCNN 

 

Figure 3 shows the samples coated Zn metals. The 

black lines on the plates are not actual but the 

reflection of the background. Thanks to the reflection, 

it is possible to define the level of the brightness of 

the coating. For example, in Figure 3a, the black lines 

on the plate are clearly seen, which means that the 

surface is fully bright. In Figure 3b, there are some 

defects and mat regions. As seen in Figure 3c, the 

black lines are not seen because the surface is fully 

mat. With this technique, it is possible to analyze the 

surface of the coating easily in terms of defects and 

brightness sequentially. 

  

 
 

Figure 3. Zn coated panels obtained in the electroplating 

baths with varied compositions. 

The electroplating baths are dynamic. The 

concentration of additives varies constantly in the 

operation. Therefore, it is crucial to keep them under 

control. The surface view of the coating provides the 

knowledge about the deficiencies in the electroplating 

bath. For example, the dullness at higher current 

density (HCD) region of the coated panel indicates the 

lack of brightener in the zinc electroplating bath. The 

cloudy deposit points out the metal contamination in 

the bath. The surface appearance of the coating was 

divided into 4 categories. These are “Full Bright”, 

“Full Fail”, “LCD Fail” and “HCD Fail”. The Mask 

RCNN algorithm was used to define which category 

the surface views belonged to. This step is crucial 

because these outputs were used in the machine 

learning algorithms to identify the related organic 

additives affecting the surface on the plate. The Mask 

RCNN algorithm detected all categories without error 

in the test dataset. This result is very promising to 

identify the additives in the electroplating bath. 

Figure 4 indicates the loss values of the training and 

validation dataset. The lower loss is expected for 

thriving model. Region proposal network (RPN) 

refers to a deep CNN technique for suggesting regions 
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in object recognition. ‘rpn_class_loss’ is the loss 

value computed during the classification, and 

‘rpn_bbox_loss’ is the loss value computed during the 

bounding box detection. The three outputs emerge in 

the Mask RCNN structure: box delimiter, 

classification and masking. ‘mrcnn_bbox_loss’, 

‘mrcnn_class_loss’, ‘mrcnn_mask_loss’ values show 

the errors of these outcomes. Figure 5 illustrates some 

examples for the ground truth and predicted mask 

from the test images. The results depict that the 

underfitting or overfitting was not observed because 

the trained model predicted all classes 100% correctly 

in the test dataset. The intersection over union (IoU) 

values of the object detection in the test dataset are in 

the range of 93–97%. 

 

 

Figure 4. The loss vs. epoch number. 

 

 

Figure 5. a) Ground truth and b) predicted mask for “Full 

Bright” class c) ground truth and d) predicted mask for 

“HCD Fail” class. 

 

3.2 Machine Learning 
 

Organic additives are the most important parameters 

in the electroplating bath because they influence the 

appearance of the coating directly. The concentration 

of organic additives is constantly changing in the 

running bath, so they should be kept within a certain 

range. To achieve this, the machine learning 

algorithms are a promising technique to estimate the 

organic additives in the electroplating bath. Some 

organic additives with different concentration were 

added to the Hull-cell and coatings were performed in 

these electroplating baths. The coatings were labelled 

as “Full Bright”, “Full Fail”, “HCD Fail” and “LCD 

Fail” according to the quality of the coating. The 

design of experimental studies is presented in the 

excel file named as contents of the solution in the 

supplementary material. The SVC [18], [19], MLP 

[20], [21], XGB [22], [23], GP [24], [25] and RF [26], 

[27] algorithms were used to train the dataset 

generated from the experimental studies. The 

hyperparameters of all models were optimized at two 

levels. For example, the hyperparameter of 

‘n_estimators’ in RF model were tested in 10 and 50 

values. The other hyperparameters in all models were 

tested in the same way. The highest F1 score was used 

to select the best hyperparameters in all models. The 

hyperparameters giving the highest F1 score were 

printed in the txt files. The accuracy, F1 score, 

Precision and Recall of all the models are presented 

in Table 2. The model having the highest F1 score was 

selected as the best model. As seen in Table 2, the best 

model is RF model. It predicted all classes in the test 

dataset with high accuracy. RF model was selected for 

further optimization. The equations to calculate the 

accuracy, F1 score, Precision and Recall metrics are 

indicated in Eq.1. The meanings of the terms of TP, 

TN, FP and FN are depicted in Table 3. 
 
Table 2. The accuracy, F1 score, Precision and Recall of 

all models. 

 

ML 

Methods 
Accuracy 

F1 

score 
Precision Recall 

F
u

ll
 B

ri
g

h
t 

MLP 0.76 0.77 0.71 0.83 

SVC 0.66 0.68 0.61 0.78 

GP 0.58 0.58 0.55 0.61 

XGBoost 0.84 0.82 0.88 0.78 

RF 0.95 0.95 0.90 1.00 

F
u

ll
 F

a
il

 

MLP 0.60 0.48 0.00 0.62 

SVC 0.61 0.48 0.54 0.44 

GP 0.39 0.38 0.33 0.44 

XGBoost 0.58 0.60 0.50 0.75 

RF 0.92 0.91 0.88 0.94 
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H
C

D
 F

a
il

 
MLP 0.95 0.50 0.50 0.50 

SVC 0.95 0.00 0.00 0.00 

GP 0.95 0.00 0.00 0.00 

XGBoost 0.95 0.00 0.00 0.00 

RF 1.00 1.00 1.00 1.00 

L
C

D
 F

a
il

 

MLP 0.95 0.00 0.00 0.00 

SVC 0.95 0.00 0.00 0.00 

GP 0.95 0.00 0.00 0.00 

XGBoost 0.95 0.00 0.00 0.00 

RF 0.97 0.80 0.67 1.00 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
(𝑇𝑃 + 𝑇𝑁)

(𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁)
 

𝐹1 𝑠𝑐𝑜𝑟𝑒 =  
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

(𝑇𝑃 + 𝐹𝑃)
 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)
 

 

(1) 

Table 3. The meanings of the terms of TN, TP, FP and 

FN. 

Confusion 

Matrix 
Y-predicted 

 

 

        0 1 

Y-true 0 True Negative 

(TN) 

False Positive 

(FP) 

1 False Negative 

(FN) 

True Positive 

(TP) 

 

Recall indicates that how much of the 

proportion of true positives (TP) is described 

correctly.  Precision shows how much of the ratio of 

predicted positives are actually 1. F1 score is the 

weighted average of precision and recall values [28], 

[29]. The confusion matrix of all models is presented 

in CM excel file in the supplemental materials. In the 

next step, the main and interaction effects of 

hyperparameters of RF model were investigated. 

Figure 6 shows the main effects of hyperparameters 

for “Full Bright” class in RF. As seen in figure 6, 

‘n_estimators’, criterion and ‘warm_start’ is the most 

efficient hyperparameters affecting the F1 score. 

While ‘n_estimators’ and ‘warm_start’ 

hyperparameters indicates the enhancing effect, 

‘criterion’ hyperparameter depicts the decreasing 

effect. It is significant to examine the interaction 

effects of these hyperparameters to each other. Figure 

7 indicates the interactions of hyperparameters. It is 

seen from the figure that the small interaction among 

‘n_estimators’, ‘warm_start’ and ‘criterion’ 

hyperparameters are present. An important point 

which can be seen in this figure is that ‘warm_start’ 

hyperparameter indicates robust effect. When it is 

kept in True, the influence of ‘n_estimators’ and 

‘criterion’ disappear and the maximum F1 score is 

acquired. The similar results were observed in other 

classes. In all the classes, ‘warm_start’ emerged as the 

most important hyperparameter. The task of 

‘warm_start’ hyperparameter in the algorithm is that 

when ‘warm_start’ hyperparameter set to True, the 

previous solution is used to fit the trees. Otherwise, it 

fits a whole fresh forest. The warm start 

hyperparameter is an effective way to add more trees 

until the training reaches a satisfying accuracy [30]. 

The optimum hyperparameters for all classes in the 

RF model to acquire the highest F1 score are 

presented in Table 4. 

 

 
Figure 6: The main effects of hyperparameter 

for “Full Bright” class. 
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Figure 7: The interaction of hyper parameters for “Full 

Bright” class. 

 

Table 4: The optimum hyper parameters for all classes in 

RF model. 

Classes Hyperparameters 

Full Bright n_estimators: 10, criterion: gini, 

max_depth: None, min_samples_split: 2, 

min_samples_leaf: 1, 

min_weight_fraction_leaf: 0.0, 

max_features: sqrt, max_leaf_nodes: 17, 

min_impurity_decrease: 0.0, bootstrap: 

False, oob_score: False , warm_start: 

True, class_weight: None, ccp_alpha: 

0.0, max_samples: None 

Full Fail n_estimators: 10, criterion: gini, 

max_depth: None, min_samples_split: 2, 

min_samples_leaf: 1, 

min_weight_fraction_leaf: 0.0, 

max_features: sqrt, max_leaf_nodes: 

None, min_impurity_decrease: 0.0, 

bootstrap: True, oob_score: False , 

warm_start: True, class_weight: None, 

ccp_alpha: 0.0, max_samples: None 

HCD Fail n_estimators: 10, criterion: entropy, 

max_depth: None, min_samples_split: 2, 

min_samples_leaf: 1, 

min_weight_fraction_leaf: 0.0, 

max_features: sqrt, max_leaf_nodes: 

None, min_impurity_decrease: 0.0, 

bootstrap: False, oob_score: False , 

warm_start: True, class_weight: None, 

ccp_alpha: 0.0, max_samples: None 

LCD Fail n_estimators: 10, criterion: gini, 

max_depth: None, min_samples_split: 2, 

min_samples_leaf: 1, 

min_weight_fraction_leaf: 0.0, 

max_features: sqrt, max_leaf_nodes: 

None, min_impurity_decrease: 0.0, 

bootstrap: True, oob_score: False , 

warm_start: True, class_weight: None, 

ccp_alpha: 0.0, max_samples: None 

3.3 Optimization 

 

NSGA-II (Non-dominated Sorting Genetic 

Algorithm) algorithm were utilized to optimize the 

electroplating bath composition. The NSGA-II 

algorithm is a multi-objective optimization algorithm 

based on non-dominated sorting and crowding 

proposed by Deb et al [31], [32]. It was designed 

based on genetic algorithm. The algorithm was 

created to eliminate the shortcomings of the NSGA 

algorithm developed by Srinivas and Deb [33]. In 

addition to the steps of the genetic algorithm, non-

dominated sorting and crowding distance calculations 

are performed. Since NSGA-II is an algorithm with 

low computational complexity and fast, it has many 

applications in the literature [34]–[36]. After the bath 

composition of electroplating bath was trained versus 

the appearance of the surface, the best models, having 

the highest F1 score, were used as the objective 

function in the optimization algorithm. The 

optimization problem is generally defined as follows. 

 

min  fm(x) m = 1, ..,M  

gj(x) ≤ 0 j = 1, ..., J Inequality constraints 

hk(x) = 0 k = 1, .., K Equality constraints 

xL = [x1, x2, ..., xi]  

xU = [x1, x2, ..., xi]  

x ∈ Ω   

where xi shows the i-th variable to be 

optimized, xi
L and xi

U depict the upper and lower 

bounds. fm(x), gj(x) and hk(x) illustrate the m-th 

objective function, j-th inequality constraint and k-th 

equality constraint respectively [37]. The models 

generated separately for “Full Bright”, “Full Fail”, 
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“HCD Fail” and “LCD Fail” classes were used as the 

objective function computing the output. In the “Full 

Bright” objective function, the maximum was defined 

as the best. No constraint was determined. The 

problem definition was made as follows, 

max fm(x) models generated  

 in machine learning 

gj(x) no constraint 

hk(x) no constraint 

xl = [1, 0, 0, 0, 0, 0] lower bound 

xu = [2, 30, 6, 10, 5, 20] upper bound 

The bath composition ranges for all classes 

were determined and their results are illustrated in 

Figure 8. As shown in the figure, to acquire the “Full 

Bright” surface, PS, BPC, MP, IME and OCB 

materials should be kept in the ranges of 21.8-27.7, 

2.5-2.9, 4.3-6.5, 0.2-0.4 and 13.8-18.7 respectively. 

OCB and BPC chemical amounts are overlapped in 

“HCD Fail” class, so the amount of PS chemicals 

should not fall below 20 and IME chemical should not 

exceed 0.5. The composition of the bath can be 

estimated from this figure showing the ranges of the 

bath compositions versus the class of the coating, 

which is determined by Mask RCNN algorithm. 
 

 

 

 

 

Figure 8: Optimized electroplating bath composition for 

all classes. 

 

4. Conclusion and Suggestions 
 

In this study, the optimum electroplating bath 

composition for “Full Bright” surface was 

investigated. In the first step, Mask RCNN were 

utilized to classify the coating, which was evaluated 

for the four classes, “Full Bright”, “Full Fail”, “HCD 

Fail” and “LCD Fail”. These classes were generated 

in accordance with the appearance of the coating, 

which were affected by the organic additives in the 

electrodeposition bath. In the second step, the 

electroplating bath compositions were trained versus 

the classes of the coating. The scope of this step is to 

generate the model predicting the class of the coating 

from the bath composition. RF algorithm was 

detected as the best model for all the classes. The 

hyperparameters of RF model were further optimized 

to increase the F1 score. The optimum RF models for 

each class was generated. These models were used as 

the objective function in the NSGA-II optimization 

process. In the last step, the bath composition ranges 

for all classes were found by using NSGA-II 

algorithm. The flow chart summarizing the whole 

study is presented in Figure 2. 

Consequently, thanks to this study, it has been 

possible to predict the content of the electrodeposition 

bath from the appearance of the coating. The 

suggested method indicates that it is possible to keep 

the organic additives in the electroplating process 

under control using artificial intelligent methods. If 

this study is implemented in the industry, it is 

expected that time and operating cost decrease 

abruptly. Also, the process will be automated. By 

extending the number of class and samples in the 

dataset, the achievement in estimating the content of 

the electroplating bath, ie organic additives, can be 

increased. 
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