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Abstract 

In this paper, a two-component generic prey-predator system incorporated with habitat complexity in predator 
functional response, and with constant time delay in predator gestation is considered. Although the role of time 

delay on the system dynamics is widely studied in the literature, only a few researchers have addressed the effect 

of habitat complexity in the prey-predator type interactions. In the first part of the paper the equilibria and stability 

analysis of the mathematical model is mentioned. In the second part,  particular attention is paid on the numerical 

bifurcation analysis of the prey and predator densities based on two system parameters:(i) the strength of 

homogeneous habitat complexity and (ii) predator attack rate with and without time delay. It is found that dynamics 

with time delay in predator gestation are found to be much richer compared to that without time delay.  The system 

stability may change from stable to unstable through a Hopf bifurcation and the solution branches emanating from 

these Hopf points are usually stable and supercritical. However, delay driven system may lead unstable orbits 

arising from Hopf bifurcations. It is also found that increasing the strength of habitat complexity may lead the 

stability change from unstable to stable. 
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Gecikme ve yaşam alanı karmaşıklığı eklenmiş av-avcı tipindeki 

etkileşimler için nümerik çatallanma analizi 
 

 

Öz 

Bu makalede avcı türü reaksiyonuna yaşam alanı karmaşıklığı ve olgunlaşma evresine sabit bir gecikme eklenerek 

elde edilen genel bir iki bileşenli av-avcı sistemi dikkate alınmıştır. Zaman gecikmesinin sistem dinamiklerine 

etkisi geniş bir şekilde literatürde çalışılmış olmasına ragmen, sadece birkaç araştırmacı av-avcı tipinde 

etkileşimlerde yaşam alanı karmaşıklığının etkilerini ele almıştır. Makalenin ilk bölümünde denge noktaları ve 

matematiksel modelin kararlılık analizinden bahsedilmiştir. İkinci kısımda av ve avcı türlerinin yoğunluklarının 

gecikmeli ve gecikmesiz durumlarda yapılan nümerik çatallanma analizine iki parametreye bağlı olarak dikkat 

çekilmiştir:(i) homojen yaşam alanı karmaşıklığının etkinlik parametresi ve (ii) avcı saldırı oranı parametresi. 

Gecikmesiz sistemde dinamiklerin kararlılığının Hopf çatallanması ile kararlı durumdan kararsız duruma değiştiği 

ve bu Hopf noktalarından yayılan dalların genelde kararlı ve süper kritik olduğu gözlemlenmiştir. Buna rağmen, 

gecikme kaynaklı sistem ise Hopf çatallanmadan çıkan kararsız yörüngelere sebep olabilir. Aynı zamanda yaşam 

alanı karmaşıklığının etkinliğini artırmanın sistem dinamiklerinin kararsız durumdan kararlı duruma geçmesine 
sebep olduğu bulunmuştur. 

 

Anahtar kelimeler: Yaşam alanı karmaşıklığı, gecikmeli diferansiyel denklemler, nümerik çatallanma analizi.  

 

1. Introduction 

 

The term habitat usually refers to an environment where particular species of organisms survive. As a 
place, a habitat has principle components such as water, food, shelter and space, with which species can 

reproduce and survive [1-3]. The influence of habitat complexity is usually studied in ecological models 

and has taken a great role in the prey-predator dynamics. Predation is one of the key factors for 
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structuring a community and  predator functional response, that can be introduced as the amount of prey 

catch by predator per unit time, is influenced by complexity of the habitat [1]. Habitat complexity has a 

great impact on the distribution of  prey-predator interactions, thus it is also one of the useful 
mechanisms for the structure of a population [1-3]. Incorporating habitat complexity in the population, 

the particular objective is to reduce the encounter rates between prey and predator, i.e. decrease the 

predation rates in the system.  Therefore, structural complexity of the habitat may have a substantial 
effect on the predator functional response [4,5]. Lower foraging behaviour or increase in the strength of 

habitat complexity may effectively stabilise the dynamics for predator-prey interactions by reducing the 

encounter rates between these species [1]. In fact, understanding population behaviour with a decreasing 

probability of prey capture due to lower foraging efficiency of predator is a significant direction for 
prey-predator interactions and has been mostly overlooked by the scientific community.  

 Time delay occurs in almost all biological situations and usually considered in the growth rates 

of prey and predator species. In fact, an organism does not instantly digest its food and some conversion 
processes, e.g. reproduction rate and gestation,  from one state (prey biomass) to another state (predator 

biomass) occur in such systems [6]. Thus it is already documented that more realistic and complex 

dynamical behaviour may be obtained in the presence of constant time delay between interacting species 
[6-10]. Since time delay is already recognised to have an essential impact on the stability results of 

population dynamics,  differential equations with time delay have attracted a great attention over several 

decades to  develop many realistic mathematical models in ecology and biology [6, 11-13]. Some of the 

papers published recently has resulted in extremely rich repertoire of dynamical patterns, considering 
local and non-local time delays in the maturation and gestation period of prey and predator species [6, 

14, 15]. In order to understand the realistic mechanism of prey-predator interactions, taking dynamical 

analysis with additional contribution of time delay into consideration is therefore required.  
 In this paper, a two-component non-linear model of prey-predator interactions with habitat 

complexity and time delay is analysed in terms of model dynamics and numerical bifurcation. The model 

is based on the paper [1], where the role of time delay is analysed through Hopf bifurcation analysis 

without delving into bifurcation analysis. For this purpose, the system behaviour can be investigated 
more succinctly and the role of habitat complexity and predator attack rate should be comprehensively 

studied in the absence and presence of predator gestation delay. Thus, the large spectrum of limit cycle 

dynamics and periodic oscillations can be obtained by considering these additional mechanisms for 
prey-predator interactions.  

 This paper is organised as follows. In the next section, the mathematical model considered in 

this paper is described. Section 3 is devoted to analyse numerical bifurcations of the densities of prey 
and predator species with respect to two main parameters of the model: the strength of habitat 

complexity and predator attack rate. These analyses are performed for varying degree of time delay in 

the gestation period and rich dynamical activity with Hopf bifurcations (HB), transcritical bifurcations 

(TCB) and period doubling bifurcations (PD) are observed. Lastly, in Section 4, the results of this paper 
are summarised and potential future directions are presented.  

 

2. Mathematical Model Formulation  
 
The general prey-predator type model analysed with habitat complexity and constant time delay in this 

paper is based on the system presented in [1]: 

 

 

d 𝑧(𝑡)

d 𝑡
 =  𝑟 𝑧(𝑡) (1 − 

𝑧(𝑡)

𝜅
)  − 

𝛼 (1 − 𝑐) 𝑧(𝑡) 𝑣(𝑡)

1 +  𝛼 (1 − 𝑐) ℎ 𝑧(𝑡)
 

 

(1) 

 

 

d 𝑣(𝑡)

d 𝑡
 =  

𝜃 𝛼 (1 − 𝑐) 𝑧(𝑡 − 𝜂) 𝑣(𝑡 − 𝜂)

1 +  𝛼 (1 − 𝑐) ℎ 𝑧(𝑡 − 𝜂)
 

 

(2) 

 

𝑧(𝜑) =  𝜓1 (𝜑),        𝑣(𝜑) =  𝜓2 (𝜑),         𝜑 ∈  (−𝜂, 0], 
 

where parameter 𝑟 represents the prey population growth rate and  𝜅  stands for the environmental 

carrying capacity. The 𝜃 gives the conversion efficiency rate for which the number of new-born 
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predators is measured for each captured prey [3]. The delay rate 𝜂 is the constant time that is needed for 

predator maturation. Holling type II functional response is used for the given prey-predator model, 

where 𝛼 represents the predator attack rate and  ℎ  stands for the handling time needed for prey [3]. In 
order to incorporate the habitat complexity, that decrease foraging or search activity of predator, the 

predator attack rate (𝛼) is replaced with 𝛼 (1 − 𝑐). Therefore, larger  𝑐  leads to a decrease in the predator 

attack rate. Here 𝑐 ∈  (0,1) is a non-dimensional parameter to measure the  strength of habitat 

complexity, see [1, 3, 16] for further details. 
 

2.1. Equilibria: 

 
The model given by equations (1) -(2) has three  possible steady states: 

 

 the trivial state exist for all parameters, i.e.   𝑺00 = (0,0), 

 the predator free steady state, i.e.    𝑺+0 = (𝜅, 0) , 

 the coexisting state, i.e.    𝑺++ = (𝑧+, 𝑣+), 

 
where 

𝑧+ = 
𝑑

𝛼 (𝜃 − ℎ 𝑑)(1 − 𝑐)
 

and 

   

𝑣+ = 
1

𝜅
 (
𝑟 (𝜅 − 𝑧+)

(1 − 𝑐)𝛼
 + 𝑟 ℎ (𝜅 − 𝑧+)𝑧+).  

 

For their biological meaning, 𝑧+ and  𝑣+ values should be positive, thus must satisfy the 

constrains   ℎ 𝑑 + 𝑑 𝛼𝜅⁄   <  𝜃 < 1 and 𝑐 < 1 − 𝑑 𝛼𝜅 (𝜃 − ℎ𝑑)⁄ . In the rest of the paper, the numerical 
bifurcation results of the two-component prey-predator type model with habitat complexity presented in 

equations (1) -(2) are shown. Since the main interest is to understand the role of habitat complexity on 

the dynamics, particular objective will be to explore the bifurcation diagrams of prey and predator 

components based on two parameters, i.e. 𝑐 and 𝛼 . Here 𝑐 represents the strength of habitat complexity 

and 𝛼 represents the predator's attack rate. One of the most obvious signs of delay driven differential 

equations is the existence of Hopf bifurcation, where a pair eigenvalues with purely imaginary part exists 

and all other remaining eigenvalues are found with a negative real part [6]. Crossing the Hopf point, 
instability is observed through a limit cycle. One should note that the model has two eigenvalues in the 

absence of delay, whereas delay driven model may lead to infinitely many eigenvalues. A particular 

focus will be on the stability of the system around the positive coexisting state, that is  𝑆++ = (𝑧+, 𝑣+),. 
Parameters used here are based on the paper [1], and fixed to 𝑟 = 3.3, 𝜅 = 898, 𝛼 = 0.045, 𝑐 = 0.8,
ℎ = 0.0437, 𝑑 = 1.06, 𝜃 = 0.215. 

In Figure 1, time simulations of prey and predator densities are shown for different delay 

parameters 𝜂. When there is no delay in the system (𝜂 = 0), stable dynamics with damping oscillations 
are observed and densities of prey and predator species are found to be stable, as in Figure 1(a). For a 

chosen parameter space, the critical threshold for delay is found to be 𝜂 ≃ 0.461, where the system 

becomes unstable through a Hopf bifurcation. The model presents unstable dynamics when time delay 

is above this threshold, e.g. 𝜂 = 0.6  as given in Figure 1(b). Higher amplitude periodic oscillations with 

a larger limit cycle can be seen with 𝜂 = 3.5 in Figure 1(c). Interestingly, chaotic behaviour can be 

observed further away from Hopf bifurcation with a further increase in delay, as in Figure 1(d), where 

random oscillations can be obtained at the initial stages of the time dependent prey (𝑧) and predator (𝑣) 
densities.  
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Figure 1. Time evolutions of two-component prey-predator model given by (1) -(2) based on different values of 

time delay 𝜂 = 0 (a), 𝜂 = 0.6 (b), 𝜂 = 3.5 (c) and 𝜂 = 9.5 (d) with initial conditions (𝑧0, 𝑣0) = (250,120). 

 The system dynamics can be alternatively shown using corresponding phase trajectories in time, 

see Figure 2.  Here the red star stands for the initial condition and green star represents the end point of 
the trajectories.  When the system is stable, see Figure 2(a), trajectories approaches to a positive steady 

state, and that is unstable as trajectory gets away from this steady state, see Figure 2(b,c,d).  

 

 
Figure 2. The phase portraits corresponding to time simulations presented in Figure 1 for 𝜂 = 0 (a), 𝜂 = 0.6 (b), 

𝜂 = 3.5 (c) and 𝜂 = 9.5 (d). 

 In Figure 3, the densities of prey and predator species are plotted with respect to time for 

sufficiently long time. As seen, dynamics with chaotic behaviour that is observed for 𝑡 <
400  eventually switches to periodic oscillations when 𝑡 > 400.  This confirms the results given in 

Figure 1(d), where random oscillations are initially obtained before the system settles down to a regular 

behaviour. Therefore, much higher time delay in the system may induce irregular population dynamics. 
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Figure 3. Time evolution of two component model presented in Figure 1(d) is simulated for 𝑡 ∈  [0,600] for 𝜂 =

9.5. 
 
 Now the local stability of the system around the positive coexisting state will be discussed and 

the instability induced by constant time delay will be analysed. Here the periodic dynamical oscillations 

occur through Hopf bifurcation, for which a critical time delay crosses a critical threshold and only a 
pair of imaginary eigenvalues appear. In this context, the local stability of the model can be investigated 

by constructing the Jacobian matrix at the equilibria. For this purpose, linearization method is used for 

the main model. Following the linearization of the system, characteristic matrix for the non-delayed part 

of the model is given by 
 

 
𝑀 = (𝑟 (1 −

2

𝜅
𝑧+) −

𝛼(1 − 𝑐)𝑣+
(1 + 𝛼(1 − 𝑐)ℎ 𝑧+) 

2

𝛼(1 − 𝑐)𝑧+
1 + 𝛼(1 − 𝑐)ℎ 𝑧+

0 −𝑑

), 

 

(3) 

 

and that for the delayed part of the model is 
 

 
𝛭𝜂 = (

0 0
𝜃𝛼(1 − 𝑐)𝑣+

(1 + 𝛼(1 − 𝑐)ℎ 𝑧+) 
2

𝜃𝛼(1 − 𝑐)𝑧+
(1 + 𝛼(1 − 𝑐)ℎ 𝑧+)

), 

 

(4) 

 

Therefore the model presented in equations (1) -(2) can be rewritten in a closed form of  

 

 

d

d 𝑡
 𝛯(𝑡) = 𝛭 𝛯(𝑡) +𝛭𝜂  𝛯(𝑡 − 𝜂), 

 

(5) 

 

where   𝜩 = (𝑧, 𝑣). 
 

The corresponding characteristic equation is then given as 

 

 
|𝛭 +𝛭𝜂  e−𝜁𝜂 −  𝜁 𝛪2| = 0, 

 

(6) 

 

where | ∙ | represents the determinant and 𝜁 stands for the eigenvalue around the positive coexisting 

state.  

 

In the absence of time delay, characteristic matrix for the trivial steady state becomes  
 

 
𝛭00 = (

𝑟 0
0 −𝑑

), 

 

(7) 

 

and corresponding eigenvalues are easily found as 𝜁1 = −𝑟 and 𝜁2 = 𝑑. Thus trivial state  𝐒00 = (0,0) 
is always a saddle point.  
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Characteristic matrix for predator-free state  𝑺+0 = (𝜅, 0)  can be similarly given as 

 

 
𝛭+0 =  

(

 
 
𝑟 (1 −

2 𝑧+
𝜅
) −

𝛼(1 − 𝑐)𝑧+
1 + 𝛼(1 − 𝑐)ℎ𝑧+

0 −𝑑 + 
𝜃𝛼(1 − 𝑐)𝑧+

(1 + 𝛼(1 − 𝑐)ℎ 𝑧+))

 
 
, 

 

(8) 

 

with corresponding eigenvalues 

 

𝜁1 = 𝑟 (1 −
2 𝑧+
𝜅
) 

and  

𝜁2 = −𝑑 + 
𝜃𝛼(1 − 𝑐)𝑧+

(1 + 𝛼(1 − 𝑐)ℎ 𝑧+)
 

 

The stability of the predator-free system depends on the choice of parameters. Considering the 

eigenvalues at a form: 
 

 
𝜁(𝜂) =  𝜉(𝜂) + 𝑖 𝜔(𝜂) 

 

(9) 

 

where 𝜉 and 𝜔  are real numbers and η is the delay rate. When  𝜂 = 0  (no delay), the coexisting state 

 𝑺++ = (𝑧+ , 𝑣+) is stable if 𝜉(0) < 0 and unstable if  𝜉(0) > 0 . When 𝜂 > 0  but chosen sufficiently 

small,  𝑺++ = (𝑧+ , 𝑣+)  becomes still stable. Here the stability change occur at a critical value of 𝜂 for 
which 

 

𝜉(𝜂) = 0       and       𝜔(𝜂) ≠ 0 

 

thus 𝜁(𝜂) in equation (9) becomes purely imaginary. When 𝑖𝜔(𝜂) is a root of the equation (6), critical 

threshold for delay 𝜂𝑐  can be found by replacing 𝜁 = 𝑖𝜔 in the characteristic equation and solving it for 

𝜂. For this purpose, the result of the characteristic equation given in equation (6) is found as 

 
𝜁2 − Trace(𝑀)𝜁 + Det(M) + 𝐾1 e

−𝜁η −𝐾2𝜁 e
−𝜁η = 0, 

 

(10) 

 

where 𝑀 is given in equation (3). Here 𝐾1 and 𝐾2 are described as 

𝐾1  = 𝑀11𝛭
𝜂
22 − 𝛭

𝜂
21 𝑀12 , 

𝐾2  = 𝛭
𝜂
22 . 

Substituting 𝜁 = 𝑖𝜔 in equation (10) the following pair of equations are obtained: 

𝐾1 cosωη − 𝐾2 ωsinωη = ω
2 − Det(𝑀), 

𝐾2 ωcosωη+ 𝐾1 sinωη  =  −ω Trace(M), 
from which one obtains 

 

(𝐾1
2 + (𝐾2ω)

2) cosωη =  𝐾1(ω
2 −Det(𝑀)) − 𝐾2ω

2 Trace(M) . 
 

The solution of these equations leads to a fourth order polynomial of ω, that can be reduced to a second 

order by replacing V = ω2. As a result a critical threshold for the Hopf bifurcation can be found as  
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η =

1

ω
acos

𝐾1(ω
2 − Det(𝑀)) − 𝐾2ω

2 Trace(M)

𝐾1
2 + (𝐾2ω)

2
. 

 

(11) 

 

As mentioned above, periodic oscillations occur when discrete time delay crosses this critical value. In 

the next section, we the analytical formulations above will be validated using numerical simulations for 
single parameter continuation.  

 
3. Numerical Bifurcation Analysis 
 

To validate the theoretical study given in the previous section, some numerical bifurcation 

analysis of the prey-predator system (1)-(2) is performed in this section. With the exception of the 

strength of habitat complexity (𝑐) and the predator's attack rate (𝛼), all parameters are fixed to their 

biologically meaningful values given in the previous section. Since habitat complexity plays an essential 

role of prey-predator interactions in ecology, this paper mainly concentrates on the model analysis based 

on the degree of habitat complexity. Figure 4 represents bifurcation diagrams of prey dynamics with 

respect to habitat complexity strength (𝑐) with 𝜂 = 0 and 𝜂 = 0.6. The number of unstable eigenvalues 

(𝜆𝑠) is associated with solid, dashed and dotted lines. Two positive critical values, which can be stable 

or unstable depending on the parameter (𝑐) for prey, are shown in the absence (𝜂 = 0) and presence 

(𝜂 = 0.6) time delay. In Figure 4(a), Hopf bifurcation (HB) is surrounded with a stable limit cycle 

around the coexisting state at a critical value of 𝑐 = 0.1227. On the other hand, the predator-free steady 

state is unstable when 𝑐 < 0.8445. Two steady states move to each other and transcritical bifurcation 

(TCB) occurs at 𝑐 = 0.8445. Further away from this point, predator free state is stable with 𝜆𝑠 = 0 and 

coexisting state is unstable with 𝜆𝑠 = 1. The delayed prey-predator system with habitat complexity, see 

Figure 4(b), still has a transcritical  bifurcation, implying that transcritical bifurcation is independent of 

time delay. An additional Hopf bifurcation is detected at 𝑐 = 1.229 in the presence of delay. One may 

also analyse the branches emanating from Hopf bifurcations. In the non-delayed case, see  Figure 4(a), 
the branches emanating from Hopf bifurcations around coexisting state is stable, whereas a branch of 

Hopf bifurcation with respectively stable and unstable dynamics can be observed around predator-free 

state  for delayed case at 𝑐 = 0.5568 and 𝑐 = 1.229 in Figure 4(b). In these orbits, stable and unstable 
dynamics collide in a period doubling bifurcation (PD).   

 

 
Figure 4. Numerical bifurcation plot of prey 𝑧 with respect to parameter 𝑐  without (a) and with (b) time delay 

for 𝜂 = 0.6. The unstable eigenvalues are given by solid (𝜆𝑠 = 0), dashed (𝜆𝑠 = 1) and dotted (𝜆𝑠 = 2) lines. 

Inset in (b) represent the orbit emanating from Hopf bifurcations. 

In Figure 5, an analysis of the predator in the system (1)-(2) with and without the impact of time 

delay is determined using the stability of the equilibria under the variation of parameter 𝑐. The system 

shows various dynamics including Hopf bifurcation, transcritical bifurcation and periodic doubling 

bifurcation. For the non-delayed case, the stability of the predator species  is visualised in Figure 5(a), 

where one transcritical (𝑐 = 0.8445) and one supercritical Hopf bifurcation (𝑐 > 0.1227) surrounded 

with a stable limit cycle are detected. Note that there is only trivial steady state that is stable when (𝑐 >
0.8445)  Switching from non-delayed case to delayed case in Figure 5(b), numerical bifurcation analysis 

of the positive equilibrium is shown under the  change of parameter 𝑐 and one more Hopf bifurcation 
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appears, that is a similar behaviour to the prey dynamics, shown in Figure 4(b). One should note that the 

maximum value for 𝜆𝑠 is found to be 2. Furthermore, transcritical bifurcation is observed as the strength 

of habitat complexity (c) crosses a critical value, where predator population goes to extinction at 
c=0.8445.   

 

 
Figure 5. Bifurcation diagram of predator 𝑣 as a function of the habitat complexity strength 𝑐 in the absence (a) 

and presence (b) of time delay with 𝜂 = 1.4. The unstable eigenvalues are given by solid (𝜆𝑠 = 0), dashed (𝜆𝑠 =
1) and dotted (𝜆𝑠 = 2)  lines. 

 

 A further numerical analysis of the prey and predator densities with respect to predator's attack 

rate (𝛼) are presented in Figure 6 and Figure 7. As seen, no interesting dynamics can be observed for 

𝛼 < 0.014 for both delayed and non-delayed cases. Predator-free state is always unstable for varying 

values of 𝛼 (𝛼 > 0.014) with λs = 1, whereas the coexisting state is stable for 𝛼 < 0.07896 and 

instability occurs through a Hopf bifurcation away from 𝛼 = 0.07896. Incorporating time delay as in 

Figure 6(b), an additional Hopf bifurcation is detected on a predator-free state, where the number of 

unstable eigenvalues change from 1 to 3. In addition, different from other cases, the solution branches 

emanating from this Hopf bifurcation at 𝛼 = 0.159 are unstable. 

 

 
Figure 6. Numerical bifurcation of prey 𝑧 as a function of  predator's attack rate 𝛼 without (a) and with time 

delay (𝜂 = 1.4) (b). Solid line (𝜆𝑠 = 0), dashed line (𝜆𝑠 = 1), dotted line (𝜆𝑠 = 2) and the line with a square 

marker (𝜆𝑠 = 3) correspond to the number of eigenvalues with positive real part (unstable) determined on the 

branches. In both (a) and (b), branches of periodic orbits of the Hopf points are shown. The inset in (a) represents 

the zoomed plot for branch emanating from Hopf bifurcation. 
 

 In Figure 7, the behaviour of the predator v under different attack rate 𝛼 is shown. Compared to 

the predator dynamics with respect to the habitat complexity strength (𝑐) presented in Figure 5, simpler 

dynamics can be observed considering a variation of 𝛼. One obvious result of Figure 6 and Figure 7 
would be that the solution branches emanating from delay driven Hopf bifurcations show unstable 

dynamics, whereas delay induced Hopf bifurcations in Figure 4 and Figure 5 represent the combination 

of stable and unstable branches with a periodic doubling bifurcation. Namely, following the branches 

arising from Hopf points, the stability can be lost or gained via a periodic doubling bifurcation. 
Furthermore, the maximum number of unstable eigenvalues are increased for numerical bifurcation in 

terms of 𝛼. It is also worth mentioning that, for all cases, the richer bifurcation dynamics can be observed 
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increasing the values of time delay. In summary, the increase in the strength of habitat complexity (𝑐) 
induce stability in general, whereas the increase in time delay in predator gestation lead instability in the 

population densities around the equilibria. 
 

 
Figure 7. Numerical bifurcation of predator 𝑣 density with respect to the predator's attack rate 𝛼  without (a) and 

with time delay (𝜂 = 1.4)  (b). Solid line (𝜆𝑠 = 0), dashed line (𝜆𝑠 = 1), dotted line (𝜆𝑠 = 2) and the line with a 

square marker (𝜆𝑠 = 3) correspond to the number of eigenvalues with positive real part (unstable) determined 

along the branches. 

 
4. Conclusion 

 

 This paper demonstrates that incorporating habitat complexity and constant time delay in a 

generic pre-predator type model can have a substantial impact on the stability and numerical bifurcation 
of the dynamics. Here, time delay is already recognised somewhat more realistic by the scientific 

community [6, 13, 14].Thus, adding delay term in the model provides an opportunity for analysing the 

properties of delay deriven Hopf bifurcations, where stability usually changes from stable to unstable. 
In fact, increasing the delay rate, much richer dynamics may be observed and further analysis of the 

branches arising from Hopf bifurcations may lead very complex behaviour. In particular, it is possible 

to observe multiple Hopf points in the presence of predator gestation delay, where solution orbits arising 
from additional Hopf bifurcation, which appears with time delay, can display other type of bifurcations 

including period doubling bifurcation. Here, time simulations and phase trajectories of the model 

presented in equations (1) -(2) are simulated using MATLAB 2017 and parameter continuation and 

numerical bifurcation with and without delay are studied  using DDE-BIFTOOL software [16, 17]. 
Numerical simulations for delay differential equations require the history function for time, and that is 

chosen as  a constant vector (𝑧0, 𝑣0) = (250,120). The analysis of the prey and predator dynamics is 

performed in a single parameter for (i) habitat complexity and (ii) predator attack rate. DDE-BIFTOOL 
is a collection of MATLAB routines that provides the numerical continuation based on specific 

parameters and allows the computation for local stability of the steady states.  

 A further investigation of the model presented here would be to use of brownian motion to 

explore the stochastic effects in the system with habitat complexity and time delay [2, 18]. Another 
extension of this work would be to make a  qualitative study for the effect of delay not only in time but 

also in space, implying that a nonlocal delay in the maturation of predator response [20]. These topics 

are deferred to future work. 
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