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A B S T R A C T 

In this work, we explore the role of deformation parameter (β) on the calculated Gamow-Teller (GT) 

strength distributions and electron capture cross-sections (ECC) for 46,48,50Cr isotopes within the 

formalism of the proton neutron-quasi-particle random phase approximation (pn-QRPA). Three different 

β parameters were used in the present study. Two of them were calculated by using the interacting boson 
model (IBM) and the macroscopic-microscopic (Mac-mic) models. The third one is the experimental β 

values obtained by employing its relation with the experimental B(E2)↑ values. The GT strength 

distributions were widely dispersed among all the daughter states of the given isotopes. They were found 

to have inverse relation with β parameter i.e decreasing with increasing the β value. The ECC were 

computed as a function of β parameter and the results suggest that the calculated ECC decreased with 

decreasing value of the β for the selected cases. 

 

© 2020. Turkish Journal Park Academic. All rights reserved.  

 

I. Introduction 

The death of stars is commonly known as called supernova 
explosion. Study of such phenomenon can be used to explore 
our Universe. The electron capture (EC) and β-decay are keys 
to decipher the mysterious mechanism of the late stages of 
stellar evolution [1].  These weak decay processes also play 
essential role in estimating the pre-supernova core 
composition as well as synthesis of neutron-rich (massive) 
nuclei [1-2].  The EC process lowers the electron degenerate 
pressure and eventually causes the core collapse of the 
massive star. Thus, the collapse began through EC on iron 
regime nuclei [3]. In the start of the collapse i.e. at low stellar 

densities (~ 1010 gcm-3) and low temperature (0.3 – 0.8 MeV), 
when the Q value and chemical potential of electrons have 
comparable magnitudes, the EC rates are sensitive to 
associated GT strength. For higher values of temperature and 
densities, the chemical potential surpasses the Q value and 
then the EC rates are largely dictated by the total GT strength. 
Therefore, the computation of the EC rates and GT strength 
distribution in the stellar matter is essential requirement. 

Fuller, Fowler, and Newman [1] performed the pioneering 
calculation by tabulating the weak interaction rates 
employing the independent-particle model (IPM) with the 
help of available experimental data for astrophysical 
applications. Weak rates were tabulated for nuclei in mass 
range 21 ≤ A ≤ 60. Later large-scale shell-model (LSSM) [4] 
was utilized to improve 𝛽± decay, positron and electron 
capture rates with the help of calculated GT strength 
distributions for various nuclei in the mass range 45-65. 
Based on these revised weak interaction rates, the pre-
supernova phases of heavy mass stars were investigated in 
Ref. [5]. It was concluded that GT strength distributions and 
EC rates for fp-shell nuclei have significant impact on the pre-
supernova evolution of massive stars. In recent past the 
proton neutron-quasi-particle random phase approximation 
(pn-QRPA) model was employed for the investigation of the 
deformation on the computed ECC [6] and EC rates in stellar 
matter for the fp-shell nuclei [7]. These EC rates were found 
larger than the past computations when compared at high 
stellar temperatures. 

Recently, pn-QRPA and IBM-1 have been used for the 
investigation of some nuclear properties for some nuclei as 
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reported in Refs. [8-10]. In the current paper, the pn-QRPA 
model with deformed basis is utilized to calculate the GT 
strength and ECC on even-even 46,48,50Cr isotopes.  
Furthermore, the impact of the deformation parameter (β) on 
the calculated GT strength and ECC for the selected cases is 
explored. The next section describes the essential theoretical 
framework used in our calculation. We display our results in 
Section-III. Conclusions are stated in Section-IV. 

 

2. Model Description 

The pn-QRPA model was used to calculate the GT (charge-
changing) strength distribution and associated ECC on the 
selected chromium isotopes in the stellar matter.  The 
following Hamiltonian was considered 

HQRPA = Hsp+ VGT
ph

+ VGT
pp

+ Vpair ,  (1) 

where Hsp is the single particle Hamiltonian,  VGT
ph

 and VGT
pp

 are 

the particle-hole GT force and particle-particle GT force 
respectively. The last term Vpair stands for the pairing force 
for which the BSC approximation was considered. The wave 
functions and single particle energies were computed within 
the formalism of Nilsson model [11], in which the β value was 
incorporated. The particle-particle and particle-hole 
parameter were optimized such that the experimental half-
lives of the nuclei were reproduced. The Ikeda sum rule [12] 
was accomplished. The Nilsson potential parameters (NPP) 
were taken from Ref. [13] and ℏω = 41A1/3 was taken as 
oscillator constant for both neutrons and protons. Q-values 
were taken from Ref. [14] and the traditional relation Δp =

Δn = 12/√A (MeV) was considered for estimation of pairing 
gaps. 

The electron capture (EC) and positron decay (PD) weak-
rates from parent state “m” to daughter state “n” are given by  

λmn
EC(PD)

 = ln2
fmn

EC(PD)
 (T,ρ,Ef)

D/Bmn
 ,   (2) 

where Bmn is the nuclear reduced transition probability and is 
given by 

Bmn = B(F)mn + (gA gV⁄ )2B(GT)mn ,  (3) 

The values of D and  gA gV⁄  were taken as 6143s [15] and 
-1.254 [16], respectively. 

The reduced Fermi (B(F)mn) and GT (B(GT)mn) transition 
probabilities were calculated using the following reduced 
transition probabilities: 

B(F)mn =
1

2Jm+1
|〈nǀǀ ∑ t+

k
k ǀǀm〉|

2
,   (4) 

B(GT)mn =
1

2Jm+1
|〈nǀǀ ∑ t+

k σ→k
k ǀǀm〉|

2
,  (5) 

here 𝐽𝑚 shows the total spin of the parent state ǀ𝑚⟩, 𝜎→𝑘 is the 
Pauli spin matrix and 𝑡+

𝑘 refer to the iso-spin raising operator.  

The computation of ECC is governed by the weak-interaction 
Hamiltonian, given by 

Ĥω =
GFcosθc

√2
jμ
lept

Ĵμ      (6) 

The terms 𝜃𝑐 and 𝐺𝐹  in the above equation, stands for Cabibbo 
angle and Fermi coupling constant, respectively. The Ĵμ and 

jμ
lept

are the hadronic and leptonic currents, respectively, given 

by 

jμ
lept

= ψ̅υe
(x)γμ(1 − γ5)ψυe

(x)    (7) 

Ĵμ = ψ̅p(x)γμ(1 − CAγ5)ψn(x)    (8) 

where ψυe
(x) show the spinor operator. The terms γμ and γ5 

are stands for Dirac γ-matrices. CA is a constant which comes 
as a consequence of the internal structure of the hadrons.  Our 
main goal was to compute the ECC which is based on nuclear 
matrix elements from parent state |𝑚⟩ to daughter state |𝑛⟩ 
and is described by; 

⟨n‖Ĥω‖m⟩ =
G

√2
lμ ∫ d3xe−iq.x⟨n|Ĵμ|m⟩   (9) 

The term q in the equation refers to the three-momentum 
transfer and 𝑙𝜇𝑒−𝑖𝑞.𝑥  stands for the leptonic matrix element 
which was employed in matrix elements calculation [17,18].  
We applied the low momentum transfer approximation q → 0 
in this work. Such approximation enables the GT operator 
(GT+ = ∑ τi

+σii )  to contribute dominantly to the total ECC 
[18]. The total ECC in the stellar condition in terms of incident 
electron energy (𝐸𝑒 ) may then be computed using the 
following equation 

σ(Ee, T) =
GF

2cos2θc

2π
∑ F(Z, Ee)

(2Jm+1) exp(
−Em

kT
)

G(A,Z,T)m   

 × ∑ (Ee − Q + Em − Em)2 |⟨m|GT+|n⟩|
2

(2Jm+1)J,f    (10) 

The Fermi function denoted by F(Z, Ee) in the above equation 
was calculated using the recipe of Ref. [19]. To compute the 
famous nuclear partition function G(Z, A, T), we used the 
prescription recently introduced in Refs. [20,21]. This recipe 
is believed to give a more realistic estimate of the partition 
functions appearing in Eq. (10). The final term in Eq. (10) 
corresponds to the nuclear matrix elements of (GT+ =
∑ τi

+σii ) operator between final and initial states.  

The underlying theme of this current work was to study the 
influence of the β parameter on the calculated GT strength 
distribution and ECC for the given Cr isotopes.  To accomplish 
the objective, three different β values listed in Table 1 were 
considered.  Two of β values were calculated employing 
theoretical models: Macroscopic-microscopic (mac-mic) 
model [22] and IBM-1 [23].  

The Mac-mic model computed the electric quadrupole 
moment (Q2). We used the value of Q2 in the following 
equation to determine the deformation parameter: 

β =
125 Q2

1.44 A
2

3⁄
Z
       (11) 

For the calculation of deformation parameters within the IBM-
1 model; first the energy levels of the given nucleus were 
calculated with a simplified model Hamiltonian by fitting its 
parameters taken as constants;   

�̂� = 𝜖�̂�𝑑 + 𝜅 �̂� ∙ �̂� + 𝜅′�̂� ∙ �̂� ,   (12) 
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where �̂�𝑑  and �̂�  are the boson-number and the angular 
momentum terms, respectively. Other term is the quadrupole 
operator given by  

 �̂�𝜇 = [𝑑† × �̃� + 𝑠† × �̃�]
𝜇

(2)
+ 𝜒[𝑑† × �̃�]

𝜇

(2)
,  (13) 

where 𝜒 is the fourth parameter and four parameters in total 
were fitted for given Cr isotopes. Later, the potential energy 
surfaces of the given nucleus was plotted as function of 
deformation parameters to calculate the  β  value. The 
potential energy surface can be formulated [24-28] from the 
given model Hamiltonian Eq. (12) as following; 

𝑉(𝛽, 𝛾) = 𝑁
𝛽2

1 + 𝛽2 [𝜖 + 𝜅′6 + 𝜅 (
5 + (1 + χ2)𝛽2

𝛽2
 , 

+
𝑁−1

𝑁

2 χ2𝛽2

7
−4 √

2

7
 χ𝛽𝑐𝑜𝑠(3𝛾)+4

1+𝛽2 )],  (14) 

where it is seen that the 𝜖, 𝜅, 𝜅′, and 𝜒 parameters are the 

common constants given in Eqs. (12-13), 𝑁 is the boson 

number of the nucleus and the 𝛽, 𝛾 are called as deformation 
parameters having same role Bohr-Mottelson model [29].   

The experimental β values were computed by employing the 
following equation  

β =
4π

3ZR0
2 × [

B(E2)↑

e2 ]
1/2

     (15) 

where R0
2 = 0.0144 A2/3b  and B(E2) ↑  is in units of e2b2 .  

The reduced electric quadrupole transition probability 
B(E2) ↑ was taken directly from the National Nuclear Data 
Center (NNDC) [30].  

3. Results and Discussions 

In Table 1, fitted parameters of the simplified Hamiltonian 
given in Eq. (12) are listed and these parameters are also 
taken as the constant in the energy surface formalism. The 
units of 𝜖 , 𝜅 , and 𝜅′  parameters are in keV and 𝜒   is 
dimensionless.  

Table 1. The fitted parameters (keV) given as constant in Eqs. (12-
13) and 𝜒  is dimensionless. 

Isotopes 𝜖 𝜅 𝜅′ 𝜒 

46Cr 0.8742 - 0.0485 - -0.45 

48Cr 1.5155 - 0.2333 - 0.0687 -1.02 

50Cr 1.2002 - 0.1565 - 0.0386 -0.5 

The energy spectra including the calculated and experimental 
energy levels of the given isotopes are plotted in Figure 1. The 
calculated levels are marked by the black solid line and the 
experimental ones [30] given with the blue dashed lines.  As 
seen from this figure the calculated energy levels with IBM-1 
are quite close to the experimental ones [30].  

 

 
Figure 1. The experimental [29] and the calculated energy levels of 
selected Cr isotopes. 

In Figure 2, the potential energy surfaces of IBM-1 are plotted 
in terms of β parameter (γ=0) for given Cr isotopes. The β 
parameters of each isotope can be calculated from the 
minimum point of the energy surfaces. These values are listed 
in Table 2. As seen from Figure 2, 46Cr has a spherical shape 
since this parameter is zero whereas 48Cr and 50Cr have 
deformed prolate shape. The even-even 46Cr, 48Cr, and 50Cr 
isotopes display shape changing from spherical to prolate 

along the isotopic chain for 22≤N≤26.  

 
Figure 2. The energy surfaces as function of β parameter for the 
given Cr isotopes. 

Table 2 summarizes the centroid and total GT strength values, 
computed from the calculated GT strength distributions for 
the selected Cr isotopes. The third column shows the values of 
β parameter computed employing the respective models 
given in second column of Table 2. The previous section 
described how these values were calculated.  The table 
reflects that the total GT strength lowers as the mass number 
increases. This outcome can be attributed to the fact that the 
EC process turns more difficult for higher neutron number. 
The centroid value decreases for heavier cases because the 
neutron excess increases. The table also shows the effect of 
deformation on the computed GT strength. It is noted that for 
each isotope, with increase in the value of β the calculated GT 
strength decreases. This is an interesting outcome, but we 
cannot generalize this statement which requires further 
investigation currently in progress. 
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Table 2. The computed centroid and total GT strength values for the 
obtained β2 parameter for the given Cr isotopes.  

İsotopes Model Deformation  
Parameter  

β 

Total GT 
strength 

∑ B(GT+) 

Centroid 
E̅+(MeV) 

 Mac-mic 0.028 9.13 12.37 

46Cr IBM-1 0 9.67 12.15 

 NNDC 0.288 8.97 12.76 

 Mac-mic 0.23551 8.94 11.74 

48Cr IBM-1 0.760 8.46 12.02 

 NNDC 0.368 8.63 11.95 

 Mac-mic 0.14124 8.58 10.78 

50Cr IBM-1 0.586 5.75 11.14 

 NNDC 0.29 7.66 10.94 

Figure 3 displays the computed ECC on 46,48,50Cr as a function 
of incident electron energy (Ee) in the range (0–30) MeV. It is 
found that for each Cr isotope the ECC increases with 
increasing incident electron energy (Ee) because of the term 
(Ee − Q + Em − Em)2 in Eq. (10). It is also noted the ECC 
increases exponentially in the energy range (1–1.5) MeV. 
When the temperature of the core rises from 0.5 MeV to 
1.0 MeV, there is a prominent increase in the calculated ECC 
value up to a factor 50. Configuration mixing and thermal 
unblocking of states could be cited as probable 
sources for this increment [31]. With a further increase in 
temperature from 1.0 MeV to 1.5 MeV, the increment in the 
computed ECC is very small (less than a factor of 2). This is 
because majority of the transitions are already unblocked at 
such high temperatures. The steep increase may be attributed 
to the behavior of the computed GT strength distribution. The 
centroid of the GT strength distribution shifts by few MeV 
with rise in temperature. The nuclear partition functions also 
increase with rise in core temperature. These factors are 
responsible for the change in behavior of the ECC. 

 

Figure 3. Calculated ECC on 46,48,50Cr as a function of incident electron 
energy for different values of temperature at β parameter (Mac-mic). 

Lastly we investigated the impact of the β parameter on 
computed ECC for the given isotopes. Figure 4 shows the 
calculated ECC as a function of the β parameter at a fixed 
temperature of 1 MeV. It can be noted from the figure that the 
computed ECC on the selected Cr isotopes decreases with 
decrease in β value and vice versa. 

 

 

Figure 4. Comparison of the computed ECC on 46,48,50Cr with different 
β values, at fixed temperature (T = 1 MeV). 

 

4. Summary 

The fundamental theme of the presented study was to explore 
the influence of the β parameter on the calculated GT strength 
distributions and ECC. To accomplish the goal, we considered 
three even-even Cr isotopes and calculated the ECC for these 
cases at three different temperatures (0.5, 1 & 1.5 MeV). The 
GT strength distributions obeyed the ISR and were widely 
dispersed among all the daughter states of the respective 
nuclei. The centroid and total GT strength values were 
computed in terms of the β parameter. It was found that the 
total GT strength has inverse relation with the β parameter i.e 
with decreasing β, the total GT strength increases and vice 
versa. The computed ECC for the given cases was noted 
increasing with increase in the core temperature. Comparing 
the computed ECC at different β values, it was found that they 
increased with rise in the value of β parameter. Moreover, the 
selected 46Cr, 48Cr, and 50Cr isotopes exhibit shape changing 
from spherical to prolate. We are studying more isotopes of 
chromium and hope to report soon on our findings.  
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