Show simple item record

dc.contributor.authorYetis, Aysegul Demir
dc.contributor.authorYesilnacar, Mehmet Irfan
dc.contributor.authorAtas, Musa
dc.date.accessioned16/12/21 12:06
dc.date.available16/12/21 12:06
dc.date.issued2021
dc.identifier.issn1866-7511
dc.identifier.urihttp://dspace.beu.edu.tr:8080/xmlui/handle/20.500.12643/9908
dc.identifier.urihttps://doi.org/10.1007/s12517-020-06342-2
dc.description.abstractFluoride in groundwater has been found to pose a severe public health threat in two villages (Karata and Sarm) of western Sanliurfa in the southeastern Anatolia region of Turkey, where many cases of fluorosis, which detrimentally affects the teeth and bon
dc.description.sponsorshipScientific and Technological Research Council of Turkey (TUBITAK)Turkiye Bilimsel ve Teknolojik Arastirma Kurumu (TUBITAK) [110Y234]; Scientific Research Projects Committee of Harran University (HUBAK)Harran University [17190]
dc.language.isoEnglish
dc.publisherSprınger Heıdelberg
dc.sourceArabıan Journal Of Geoscıences
dc.titleA machine learning approach to dental fluorosis classification
dc.typeArticle
dc.identifier.issue2
dc.identifier.doi10.1007/s12517-020-06342-2
dc.identifier.wosWOS:000609602400026
dc.identifier.volume14


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record