dc.contributor.author | Cerar, Gregor | |
dc.contributor.author | Yetgin, Halil | |
dc.contributor.author | Mohorcic, Mihael | |
dc.contributor.author | Fortuna, Carolina | |
dc.date.accessioned | 16/12/21 12:06 | |
dc.date.available | 16/12/21 12:06 | |
dc.date.issued | 2021 | |
dc.identifier.isbn | 978-3-903176-35-5 | |
dc.identifier.uri | http://dspace.beu.edu.tr:8080/xmlui/handle/20.500.12643/9888 | |
dc.identifier.uri | https://doi.org/10.23919/WONS51326.2021.9415540 | |
dc.description.abstract | Machine learning (ML) has been used to develop increasingly accurate link quality estimators for wireless networks. However, more in depth questions regarding the most suitable class of models, most suitable metrics and model performance on imbalanced dat | |
dc.description.sponsorship | Slovenian Research AgencySlovenian Research Agency - Slovenia [P2-0016, J2-9232]; EC H2020 NRG-5 Project [762013] | |
dc.language.iso | English | |
dc.publisher | Ieee | |
dc.relation.ispartof | 16th Annual Conference on Wireless On-demand Network Systems and Services (WONS) | |
dc.rights | Green Submitted | |
dc.source | 2021 16Th Annual Conference On Wıreless On-Demand Network Systems And Servıces Conference (Wons) | |
dc.title | Learning to Fairly Classify the Quality of Wireless Links | |
dc.type | Proceedings Paper | |
dc.identifier.startpage | 79 | |
dc.identifier.endpage | 86 | |
dc.identifier.doi | 10.23919/WONS51326.2021.9415540 | |
dc.identifier.wos | WOS:000678993200013 | |