Show simple item record

dc.contributor.authorCerar, Gregor
dc.contributor.authorYetgin, Halil
dc.contributor.authorMohorcic, Mihael
dc.contributor.authorFortuna, Carolina
dc.date.accessioned16/12/21 12:06
dc.date.available16/12/21 12:06
dc.date.issued2021
dc.identifier.isbn978-3-903176-35-5
dc.identifier.urihttp://dspace.beu.edu.tr:8080/xmlui/handle/20.500.12643/9888
dc.identifier.urihttps://doi.org/10.23919/WONS51326.2021.9415540
dc.description.abstractMachine learning (ML) has been used to develop increasingly accurate link quality estimators for wireless networks. However, more in depth questions regarding the most suitable class of models, most suitable metrics and model performance on imbalanced dat
dc.description.sponsorshipSlovenian Research AgencySlovenian Research Agency - Slovenia [P2-0016, J2-9232]; EC H2020 NRG-5 Project [762013]
dc.language.isoEnglish
dc.publisherIeee
dc.relation.ispartof16th Annual Conference on Wireless On-demand Network Systems and Services (WONS)
dc.rightsGreen Submitted
dc.source2021 16Th Annual Conference On Wıreless On-Demand Network Systems And Servıces Conference (Wons)
dc.titleLearning to Fairly Classify the Quality of Wireless Links
dc.typeProceedings Paper
dc.identifier.startpage79
dc.identifier.endpage86
dc.identifier.doi10.23919/WONS51326.2021.9415540
dc.identifier.wosWOS:000678993200013


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record