Show simple item record

dc.contributor.authorDuru, Ismail
dc.contributor.authorSunar, Ayse Saliha
dc.contributor.authorWhite, Su
dc.contributor.authorDiri, Banu
dc.date.accessioned16/12/21 12:06
dc.date.available16/12/21 12:06
dc.date.issued2021
dc.identifier.issn2193-567X
dc.identifier.urihttp://dspace.beu.edu.tr:8080/xmlui/handle/20.500.12643/9876
dc.identifier.urihttps://doi.org/10.1007/s13369-020-05117-x
dc.description.abstractAnalysing learners' behaviours in MOOCs has been used to identify predictive features associated with positive outcomes in engagement and learning success. Early methods predominantly analysed numerical features of behaviours such as the page views, video
dc.description.sponsorshipTUBITAKTurkiye Bilimsel ve Teknolojik Arastirma Kurumu (TUBITAK) [1059B141601346, 1059B281304197]; University of Southampton [23593]
dc.language.isoEnglish
dc.publisherSprınger Heıdelberg
dc.rightsGreen Published, Bronze
dc.sourceArabıan Journal For Scıence And Engıneerıng
dc.titleDeep Learning for Discussion-Based Cross-Domain Performance Prediction of MOOC Learners Grouped by Language on FutureLearn
dc.typeArticle
dc.identifier.issue4
dc.identifier.startpage3613
dc.identifier.endpage3629
dc.identifier.doi10.1007/s13369-020-05117-x
dc.identifier.wosWOS:000605539200001
dc.identifier.volume46


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record