dc.contributor.author | Duru, Ismail | |
dc.contributor.author | Sunar, Ayse Saliha | |
dc.contributor.author | White, Su | |
dc.contributor.author | Diri, Banu | |
dc.date.accessioned | 16/12/21 12:06 | |
dc.date.available | 16/12/21 12:06 | |
dc.date.issued | 2021 | |
dc.identifier.issn | 2193-567X | |
dc.identifier.uri | http://dspace.beu.edu.tr:8080/xmlui/handle/20.500.12643/9876 | |
dc.identifier.uri | https://doi.org/10.1007/s13369-020-05117-x | |
dc.description.abstract | Analysing learners' behaviours in MOOCs has been used to identify predictive features associated with positive outcomes in engagement and learning success. Early methods predominantly analysed numerical features of behaviours such as the page views, video | |
dc.description.sponsorship | TUBITAKTurkiye Bilimsel ve Teknolojik Arastirma Kurumu (TUBITAK) [1059B141601346, 1059B281304197]; University of Southampton [23593] | |
dc.language.iso | English | |
dc.publisher | Sprınger Heıdelberg | |
dc.rights | Green Published, Bronze | |
dc.source | Arabıan Journal For Scıence And Engıneerıng | |
dc.title | Deep Learning for Discussion-Based Cross-Domain Performance Prediction of MOOC Learners Grouped by Language on FutureLearn | |
dc.type | Article | |
dc.identifier.issue | 4 | |
dc.identifier.startpage | 3613 | |
dc.identifier.endpage | 3629 | |
dc.identifier.doi | 10.1007/s13369-020-05117-x | |
dc.identifier.wos | WOS:000605539200001 | |
dc.identifier.volume | 46 | |