Show simple item record

dc.contributor.authorAtas, Musa
dc.contributor.authorYesilnacar, Mehmet Irfan
dc.contributor.authorYetis, Aysegul Demir
dc.date.accessioned16/12/21 12:06
dc.date.available16/12/21 12:06
dc.identifier.issn0269-4042
dc.identifier.urihttp://dspace.beu.edu.tr:8080/xmlui/handle/20.500.12643/9803
dc.identifier.urihttps://doi.org/10.1007/s10653-021-01148-x
dc.description.abstractStudies have shown that excessive intake of fluoride into human body from drinking water may cause fluorosis adversely affects teeth and bones. Fluoride in water is mostly of geological origin and the amounts depend highly on many factors such as availabi
dc.description.sponsorshipTUBITAK (the Scientific and Technological Research Council of Turkey)Turkiye Bilimsel ve Teknolojik Arastirma Kurumu (TUBITAK); Scientific Research Projects Committee of Harran University (HU BAK)Harran University
dc.language.isoEnglish
dc.publisherSprınger
dc.sourceEnvıronmental Geochemıstry And Health
dc.titleNovel machine learning techniques based hybrid models (LR-KNN-ANN and SVM) in prediction of dental fluorosis in groundwater
dc.typeArticle; Early Access
dc.identifier.doi10.1007/s10653-021-01148-x
dc.identifier.wosWOS:000714867300001


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record