| dc.contributor.author | Şengür, A. |  | 
| dc.contributor.author | Guo, Y. |  | 
| dc.contributor.author | Budak, U. |  | 
| dc.contributor.author | Vespa, L.J. |  | 
| dc.date.accessioned | 2021-12-16T10:12:14Z |  | 
| dc.date.available | 2021-12-16T10:12:14Z |  | 
| dc.date.issued | 2017 |  | 
| dc.identifier.isbn | 9.78154E+12 |  | 
| dc.identifier.uri | https://doi.org/10.1109/IDAP.2017.8090331 |  | 
| dc.identifier.uri | http://dspace.beu.edu.tr:8080/xmlui/handle/20.500.12643/13067 |  | 
| dc.description.abstract | Computer-aided detection (CAD) provides an efficient way to assist doctors to interpret fundus images. In a CAD system, retinal vessel (RV) detection is an important step to identify the retinal disease regions automatically and accurately. However, RV de |  | 
| dc.language.iso | English |  | 
| dc.publisher | Institute of Electrical and Electronics Engineers Inc. |  | 
| dc.relation.ispartof | 2017 International Artificial Intelligence and Data Processing Symposium, IDAP 2017 |  | 
| dc.source | IDAP 2017 - International Artificial Intelligence and Data Processing Symposium |  | 
| dc.title | A retinal vessel detection approach using convolution neural network |  | 
| dc.type | Conference Paper |  | 
| dc.identifier.doi | 10.1109/IDAP.2017.8090331 |  | 
| dc.identifier.scopus | 2-s2.0-85039923290 |  |