dc.contributor.author | Diker, A. | |
dc.contributor.author | Comert, Z. | |
dc.contributor.author | Avci, E. | |
dc.contributor.author | Velappan, S. | |
dc.date.accessioned | 2021-12-16T10:12:07Z | |
dc.date.available | 2021-12-16T10:12:07Z | |
dc.date.issued | 2018 | |
dc.identifier.isbn | 9.78154E+12 | |
dc.identifier.uri | https://doi.org/10.1109/SIU.2018.8404299 | |
dc.identifier.uri | http://dspace.beu.edu.tr:8080/xmlui/handle/20.500.12643/12996 | |
dc.description.abstract | Myocardial Infarction (MI) is one of the well-known heart attacks. This cardiac abnormality occurs when the artery connecting the heart is blocked. The main aim of this paper is to identify electrocardiogram (ECG) signals using morphological, time-domain | |
dc.language.iso | English | |
dc.publisher | Institute of Electrical and Electronics Engineers Inc. | |
dc.relation.ispartof | 26th IEEE Signal Processing and Communications Applications Conference, SIU 2018 | |
dc.source | 26th IEEE Signal Processing and Communications Applications Conference, SIU 2018 | |
dc.title | Intelligent system based on Genetic Algorithm and support vector machine for detection of myocardial infarction from ECG signals | |
dc.type | Conference Paper | |
dc.identifier.startpage | 1 | |
dc.identifier.endpage | 4 | |
dc.identifier.doi | 10.1109/SIU.2018.8404299 | |
dc.identifier.scopus | 2-s2.0-85050812929 | |