dc.contributor.author | Diker, A. | |
dc.contributor.author | Comert, Z. | |
dc.contributor.author | Avci, E. | |
dc.contributor.author | Togacar, M. | |
dc.contributor.author | Ergen, B. | |
dc.date.accessioned | 2021-12-16T10:11:55Z | |
dc.date.available | 2021-12-16T10:11:55Z | |
dc.date.issued | 2019 | |
dc.identifier.isbn | 9.78173E+12 | |
dc.identifier.uri | https://doi.org/10.1109/UBMYK48245.2019.8965506 | |
dc.identifier.uri | http://dspace.beu.edu.tr:8080/xmlui/handle/20.500.12643/12852 | |
dc.description.abstract | Electrocardiogram (ECG) is a biomedical signal which represents the electrical activity of the human heart. Various cardiac diseases have been detected using the outputs of ECG devices. Recently, advances in signal processing techniques bring out a new ho | |
dc.language.iso | English | |
dc.publisher | Institute of Electrical and Electronics Engineers Inc. | |
dc.relation.ispartof | 1st International Informatics and Software Engineering Conference, IISEC 2019 | |
dc.source | 1st International Informatics and Software Engineering Conference: Innovative Technologies for Digital Transformation, IISEC 2019 - Proceedings | |
dc.title | A Novel Application based on Spectrogram and Convolutional Neural Network for ECG Classification | |
dc.type | Conference Paper | |
dc.identifier.doi | 10.1109/UBMYK48245.2019.8965506 | |
dc.identifier.scopus | 2-s2.0-85079245453 | |