Show simple item record

dc.contributor.authorDiker, A.
dc.contributor.authorComert, Z.
dc.contributor.authorAvci, E.
dc.contributor.authorTogacar, M.
dc.contributor.authorErgen, B.
dc.date.accessioned2021-12-16T10:11:55Z
dc.date.available2021-12-16T10:11:55Z
dc.date.issued2019
dc.identifier.isbn9.78173E+12
dc.identifier.urihttps://doi.org/10.1109/UBMYK48245.2019.8965506
dc.identifier.urihttp://dspace.beu.edu.tr:8080/xmlui/handle/20.500.12643/12852
dc.description.abstractElectrocardiogram (ECG) is a biomedical signal which represents the electrical activity of the human heart. Various cardiac diseases have been detected using the outputs of ECG devices. Recently, advances in signal processing techniques bring out a new ho
dc.language.isoEnglish
dc.publisherInstitute of Electrical and Electronics Engineers Inc.
dc.relation.ispartof1st International Informatics and Software Engineering Conference, IISEC 2019
dc.source1st International Informatics and Software Engineering Conference: Innovative Technologies for Digital Transformation, IISEC 2019 - Proceedings
dc.titleA Novel Application based on Spectrogram and Convolutional Neural Network for ECG Classification
dc.typeConference Paper
dc.identifier.doi10.1109/UBMYK48245.2019.8965506
dc.identifier.scopus2-s2.0-85079245453


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record