dc.contributor.author | Alçin, Ö.F. | |
dc.contributor.author | Budak, Ü. | |
dc.contributor.author | Aslan, M. | |
dc.contributor.author | Akbulut, Y. | |
dc.contributor.author | Cömert, Z. | |
dc.contributor.author | Akpinar, M.H. | |
dc.contributor.author | Şengür, A. | |
dc.date.accessioned | 2021-12-16T10:11:52Z | |
dc.date.available | 2021-12-16T10:11:52Z | |
dc.date.issued | 2020 | |
dc.identifier.isbn | 9780750332798; 9780750332774 | |
dc.identifier.uri | http://dspace.beu.edu.tr:8080/xmlui/handle/20.500.12643/12810 | |
dc.description.abstract | Physical action recognition is a hot topic in human-machine interactions. It has potential uses in helping disabled people and in various robotic applications. Electromyography (EMG) signals measure the electrical activity of the muscular systems involved | |
dc.language.iso | English | |
dc.publisher | Institute of Physics Publishing | |
dc.source | Modelling and Analysis of Active Biopotential Signals in Healthcare, Volume 1 | |
dc.title | Classification of physical actions from surface EMG signals using the wavelet packet transform and local binary patterns | |
dc.type | Book Chapter | |
dc.identifier.endpage | Aug-31 | |
dc.identifier.scopus | 2-s2.0-85096251919 | |