Show simple item record

dc.contributor.authorAlçin, Ö.F.
dc.contributor.authorBudak, Ü.
dc.contributor.authorAslan, M.
dc.contributor.authorAkbulut, Y.
dc.contributor.authorCömert, Z.
dc.contributor.authorAkpinar, M.H.
dc.contributor.authorŞengür, A.
dc.date.accessioned2021-12-16T10:11:52Z
dc.date.available2021-12-16T10:11:52Z
dc.date.issued2020
dc.identifier.isbn9780750332798; 9780750332774
dc.identifier.urihttp://dspace.beu.edu.tr:8080/xmlui/handle/20.500.12643/12810
dc.description.abstractPhysical action recognition is a hot topic in human-machine interactions. It has potential uses in helping disabled people and in various robotic applications. Electromyography (EMG) signals measure the electrical activity of the muscular systems involved
dc.language.isoEnglish
dc.publisherInstitute of Physics Publishing
dc.sourceModelling and Analysis of Active Biopotential Signals in Healthcare, Volume 1
dc.titleClassification of physical actions from surface EMG signals using the wavelet packet transform and local binary patterns
dc.typeBook Chapter
dc.identifier.endpageAug-31
dc.identifier.scopus2-s2.0-85096251919


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record