dc.contributor.author | Ari, D. | |
dc.contributor.author | Alagoz, B.B. | |
dc.date.accessioned | 2021-12-16T10:11:44Z | |
dc.date.available | 2021-12-16T10:11:44Z | |
dc.date.issued | 2021 | |
dc.identifier.isbn | 9.78167E+12 | |
dc.identifier.uri | https://doi.org/10.1109/ICIT52682.2021.9491652 | |
dc.identifier.uri | http://dspace.beu.edu.tr:8080/xmlui/handle/20.500.12643/12646 | |
dc.description.abstract | A behavioral modeling of financial markets based on daily data is not an easy problem for machine learning algorithms. The social and physiological factors can take effect on market data and result in significant uncertainty in data. This study demonstrat | |
dc.language.iso | English | |
dc.publisher | Institute of Electrical and Electronics Engineers Inc. | |
dc.relation.ispartof | 2021 International Conference on Information Technology, ICIT 2021 | |
dc.source | 2021 International Conference on Information Technology, ICIT 2021 - Proceedings | |
dc.title | Modeling Daily Financial Market Data by Using Tree-Based Genetic Programming | |
dc.type | Conference Paper | |
dc.identifier.endpage | 386 | |
dc.identifier.doi | 10.1109/ICIT52682.2021.9491652 | |
dc.identifier.scopus | 2-s2.0-85112189932 | |