dc.contributor.author | Et, Mikail | |
dc.contributor.author | Karakas, Murat | |
dc.contributor.author | Cinar, Muhammed | |
dc.date.accessioned | 16/12/21 12:08 | |
dc.date.available | 16/12/21 12:08 | |
dc.date.issued | 2013 | |
dc.identifier.issn | 1687-1812 | |
dc.identifier.uri | http://dspace.beu.edu.tr:8080/xmlui/handle/20.500.12643/10688 | |
dc.identifier.uri | https://doi.org/10.1186/1687-1812-2013-165 | |
dc.description.abstract | In this paper, we define the modular space by using the Zweier operator and a modular. Then, we consider it equipped with the Luxemburg norm and also examine the uniform Opial property and property beta. Finally, we show that this space has the fixed poin | |
dc.language.iso | English | |
dc.publisher | Sprınger Internatıonal Publıshıng Ag | |
dc.rights | gold | |
dc.source | Fıxed Poınt Theory And Applıcatıons | |
dc.title | Some geometric properties of a new modular space defined by Zweier operator | |
dc.type | Article | |
dc.identifier.doi | 10.1186/1687-1812-2013-165 | |
dc.identifier.wos | WOS:000323748300001 | |