dc.contributor.author | Pala, Zeydin | |
dc.contributor.author | Yamli, Veysi | |
dc.contributor.author | Unluk, Ibrahim Halil | |
dc.date.accessioned | 16/12/21 12:07 | |
dc.date.available | 16/12/21 12:07 | |
dc.date.issued | 2017 | |
dc.identifier.isbn | 978-1-5386-4001-2 | |
dc.identifier.uri | http://dspace.beu.edu.tr:8080/xmlui/handle/20.500.12643/10420 | |
dc.description.abstract | Deep learning (DL) is deployed in Deep Neural Networks (DNNs), Recurrent Neural Networks (RNNs), Convolutional Neural Networks (CNNs), Deep Stacked Networks (DSNs), Deep Belief Networks (DBNs), and Deep Boltzmann Machines (DBMs). DL continues to take powe | |
dc.language.iso | English | |
dc.publisher | Ieee | |
dc.relation.ispartof | 13th International Conference on Perspective Technologies and Methods in MEMS Design (MEMSTECH) | |
dc.source | 2017 Xıııth Internatıonal Conference On Perspectıve Technologıes And Methods In Mems Desıgn (Memstech) | |
dc.title | Deep Learning Researches in Turkey: An Academic Approach | |
dc.type | Proceedings Paper | |
dc.identifier.startpage | 120 | |
dc.identifier.endpage | 123 | |
dc.identifier.wos | WOS:000414280700029 | |