| dc.contributor.author | Akbulut, Yaman |  | 
| dc.contributor.author | Sengur, Abdulkadir |  | 
| dc.contributor.author | Budak, Umit |  | 
| dc.contributor.author | Ekici, Sami |  | 
| dc.date.accessioned | 16/12/21 12:07 |  | 
| dc.date.available | 16/12/21 12:07 |  | 
| dc.date.issued | 2017 |  | 
| dc.identifier.isbn | 978-1-5386-1880-6 |  | 
| dc.identifier.uri | http://dspace.beu.edu.tr:8080/xmlui/handle/20.500.12643/10402 |  | 
| dc.description.abstract | The human face is an important biometric quantity which can be used to access a user-based system. As human face images can easily be obtained via mobile cameras and social networks, user-based access systems should be robust against spoof face attacks. I |  | 
| dc.language.iso | English |  | 
| dc.publisher | Ieee |  | 
| dc.relation.ispartof | 2017 International Artificial Intelligence and Data Processing Symposium (IDAP) |  | 
| dc.source | 2017 Internatıonal Artıfıcıal Intellıgence And Data Processıng Symposıum (Idap) |  | 
| dc.title | Deep Learning based Face Liveness Detection in Videos |  | 
| dc.type | Proceedings Paper |  | 
| dc.identifier.wos | WOS:000426868700042 |  |