dc.contributor.author | Comert, Zafer | |
dc.contributor.author | Kocamaz, Adnan Fatih | |
dc.date.accessioned | 16/12/21 12:07 | |
dc.date.available | 16/12/21 12:07 | |
dc.date.issued | 2019 | |
dc.identifier.isbn | 978-3-319-91186-1; 978-3-319-91185-4 | |
dc.identifier.issn | 2194-5357 | |
dc.identifier.uri | http://dspace.beu.edu.tr:8080/xmlui/handle/20.500.12643/10201 | |
dc.identifier.uri | https://doi.org/10.1007/978-3-319-91186-1_25 | |
dc.description.abstract | Electronic fetal monitoring (EFM) device which is used to record Fetal Heart Rate (FHR) and Uterine Contraction (UC) signals simultaneously is one of the significant tools in terms of the present obstetric clinical applications. In clinical practice, EFM | |
dc.language.iso | English | |
dc.publisher | Sprınger Internatıonal Publıshıng Ag | |
dc.relation.ispartof | 7th Computer Science On-Line Conference (CSOC) | |
dc.source | Software Engıneerıng And Algorıthms In Intellıgent Systems | |
dc.title | Fetal Hypoxia Detection Based on Deep Convolutional Neural Network with Transfer Learning Approach | |
dc.type | Proceedings Paper | |
dc.identifier.startpage | 239 | |
dc.identifier.endpage | 248 | |
dc.identifier.doi | 10.1007/978-3-319-91186-1_25 | |
dc.identifier.wos | WOS:000445094400025 | |
dc.identifier.volume | 763 | |