Show simple item record

dc.contributor.authorComert, Zafer
dc.contributor.authorKocamaz, Adnan Fatih
dc.date.accessioned16/12/21 12:07
dc.date.available16/12/21 12:07
dc.date.issued2019
dc.identifier.isbn978-3-319-91186-1; 978-3-319-91185-4
dc.identifier.issn2194-5357
dc.identifier.urihttp://dspace.beu.edu.tr:8080/xmlui/handle/20.500.12643/10201
dc.identifier.urihttps://doi.org/10.1007/978-3-319-91186-1_25
dc.description.abstractElectronic fetal monitoring (EFM) device which is used to record Fetal Heart Rate (FHR) and Uterine Contraction (UC) signals simultaneously is one of the significant tools in terms of the present obstetric clinical applications. In clinical practice, EFM
dc.language.isoEnglish
dc.publisherSprınger Internatıonal Publıshıng Ag
dc.relation.ispartof7th Computer Science On-Line Conference (CSOC)
dc.sourceSoftware Engıneerıng And Algorıthms In Intellıgent Systems
dc.titleFetal Hypoxia Detection Based on Deep Convolutional Neural Network with Transfer Learning Approach
dc.typeProceedings Paper
dc.identifier.startpage239
dc.identifier.endpage248
dc.identifier.doi10.1007/978-3-319-91186-1_25
dc.identifier.wosWOS:000445094400025
dc.identifier.volume763


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record