dc.contributor.author | Diker, Aykut | |
dc.contributor.author | Avci, Derya | |
dc.contributor.author | Avci, Engin | |
dc.contributor.author | Gedikpinar, Mehmet | |
dc.date.accessioned | 16/12/21 12:07 | |
dc.date.available | 16/12/21 12:07 | |
dc.date.issued | 2019 | |
dc.identifier.issn | 0030-4026 | |
dc.identifier.uri | http://dspace.beu.edu.tr:8080/xmlui/handle/20.500.12643/10188 | |
dc.identifier.uri | https://doi.org/10.1016/j.ijleo.2018.11.065 | |
dc.description.abstract | The examination and classification of Electrocardiogram (ECG) records have become particularly significant for diagnosing heart diseases. Machine learning methods are widely used in classifying ECG signals. In this study, Physikalisch-Technische Bundesans | |
dc.language.iso | English | |
dc.publisher | Elsevıer Gmbh | |
dc.source | Optık | |
dc.title | A new technique for ECG signal classification genetic algorithm Wavelet Kernel extreme learning machine | |
dc.type | Article | |
dc.identifier.startpage | 46 | |
dc.identifier.endpage | 55 | |
dc.identifier.doi | 10.1016/j.ijleo.2018.11.065 | |
dc.identifier.wos | WOS:000462810600006 | |
dc.identifier.volume | 180 | |