Show simple item record

dc.contributor.authorZhao, Zhidong
dc.contributor.authorZhang, Yang
dc.contributor.authorComert, Zafer
dc.contributor.authorDeng, Yanjun
dc.date.accessioned2021-12-16T09:07:00Z
dc.date.available2021-12-16T09:07:00Z
dc.date.issued2019
dc.identifier.issn1664-042X
dc.identifier.urihttps://doi.org/10.3389/fphys.2019.00255
dc.identifier.urihttp://dspace.beu.edu.tr:8080/xmlui/handle/20.500.12643/10125
dc.description.abstractBackground: Electronic fetal monitoring (EFM) is widely applied as a routine diagnostic tool by clinicians using fetal heart rate (FHR) signals to prevent fetal hypoxia. However, visual interpretation of the FHR usually leads to significant inter-observer
dc.description.sponsorshipWelfare Project of the Science Technology Department of Zhejiang Province [2017C31046, 2016C33079]; Smart City Collaborative Innovation Center of Zhejiang Province; Graduate Research Innovation Project of Hangzhou Dianzi University [CXJJ2017038]
dc.language.isoEnglish
dc.publisherFrontıers Medıa Sa
dc.rightsGreen Published, gold
dc.sourceFrontıers In Physıology
dc.titleComputer-Aided Diagnosis System of Fetal Hypoxia Incorporating Recurrence Plot With Convolutional Neural Network
dc.typeArticle
dc.identifier.doi10.3389/fphys.2019.00255
dc.identifier.wosWOS:000460868100001
dc.identifier.volume10


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record