dc.contributor.author | Zhao, Zhidong | |
dc.contributor.author | Zhang, Yang | |
dc.contributor.author | Comert, Zafer | |
dc.contributor.author | Deng, Yanjun | |
dc.date.accessioned | 2021-12-16T09:07:00Z | |
dc.date.available | 2021-12-16T09:07:00Z | |
dc.date.issued | 2019 | |
dc.identifier.issn | 1664-042X | |
dc.identifier.uri | https://doi.org/10.3389/fphys.2019.00255 | |
dc.identifier.uri | http://dspace.beu.edu.tr:8080/xmlui/handle/20.500.12643/10125 | |
dc.description.abstract | Background: Electronic fetal monitoring (EFM) is widely applied as a routine diagnostic tool by clinicians using fetal heart rate (FHR) signals to prevent fetal hypoxia. However, visual interpretation of the FHR usually leads to significant inter-observer | |
dc.description.sponsorship | Welfare Project of the Science Technology Department of Zhejiang Province [2017C31046, 2016C33079]; Smart City Collaborative Innovation Center of Zhejiang Province; Graduate Research Innovation Project of Hangzhou Dianzi University [CXJJ2017038] | |
dc.language.iso | English | |
dc.publisher | Frontıers Medıa Sa | |
dc.rights | Green Published, gold | |
dc.source | Frontıers In Physıology | |
dc.title | Computer-Aided Diagnosis System of Fetal Hypoxia Incorporating Recurrence Plot With Convolutional Neural Network | |
dc.type | Article | |
dc.identifier.doi | 10.3389/fphys.2019.00255 | |
dc.identifier.wos | WOS:000460868100001 | |
dc.identifier.volume | 10 | |