Show simple item record

dc.contributor.authorCimen, Erkan
dc.date.accessioned2025-10-24T08:01:55Z
dc.date.available2025-10-24T08:01:55Z
dc.date.issued2025-09-30
dc.identifier.issn2147-3129
dc.identifier.urihttp://dspace.beu.edu.tr:8080/xmlui/handle/123456789/16365
dc.description.abstractIn this article, a novel numerical scheme is suggested to solve periodical boundary value problem for linear first order singularly perturbed equation. This scheme is constructed by the finite difference method on a special non-uniform mesh (Shishkin mesh) using quadrature rules with the remaining terms in integral form. It is proven that the scheme achieves almost first-order convergence on the discrete maximum norm. Finally, two test problems are considered to demonstrate the accuracy and performance of the method.tr_TR
dc.language.isoEnglishtr_TR
dc.publisherBitlis Eren Üniversitesitr_TR
dc.rightsinfo:eu-repo/semantics/openAccesstr_TR
dc.subjectSingular perturbation ,tr_TR
dc.subjectPeriodic problem ,tr_TR
dc.subjectFinite difference method ,tr_TR
dc.subjectUniform convergencetr_TR
dc.titleA Uniformly Convergent Difference Scheme for the Singularly Perturbed Periodic Problemtr_TR
dc.typeArticletr_TR
dc.identifier.issue3tr_TR
dc.identifier.startpage1348tr_TR
dc.identifier.endpage1361tr_TR
dc.relation.journalBitlis Eren Üniversitesi Fen Bilimleri Dergisitr_TR
dc.identifier.volume14tr_TR


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record