| dc.contributor.author | Cimen, Erkan |  | 
| dc.date.accessioned | 2025-10-24T08:01:55Z |  | 
| dc.date.available | 2025-10-24T08:01:55Z |  | 
| dc.date.issued | 2025-09-30 |  | 
| dc.identifier.issn | 2147-3129 |  | 
| dc.identifier.uri | http://dspace.beu.edu.tr:8080/xmlui/handle/123456789/16365 |  | 
| dc.description.abstract | In this article, a novel numerical scheme is suggested to solve periodical boundary value problem for linear first order singularly perturbed equation. This scheme is constructed by the finite difference method on a special non-uniform mesh (Shishkin mesh) using quadrature rules with the remaining terms in integral form. It is proven that the scheme achieves almost first-order convergence on the discrete maximum norm. Finally, two test problems are considered to demonstrate the accuracy and performance of the method. | tr_TR | 
| dc.language.iso | English | tr_TR | 
| dc.publisher | Bitlis Eren Üniversitesi | tr_TR | 
| dc.rights | info:eu-repo/semantics/openAccess | tr_TR | 
| dc.subject | Singular perturbation , | tr_TR | 
| dc.subject | Periodic problem , | tr_TR | 
| dc.subject | Finite difference method , | tr_TR | 
| dc.subject | Uniform convergence | tr_TR | 
| dc.title | A Uniformly Convergent Difference Scheme for the Singularly Perturbed Periodic Problem | tr_TR | 
| dc.type | Article | tr_TR | 
| dc.identifier.issue | 3 | tr_TR | 
| dc.identifier.startpage | 1348 | tr_TR | 
| dc.identifier.endpage | 1361 | tr_TR | 
| dc.relation.journal | Bitlis Eren Üniversitesi Fen Bilimleri Dergisi | tr_TR | 
| dc.identifier.volume | 14 | tr_TR |