dc.description.abstract | Meme kanseri, dünya çapında özellikle kadınlarda en sık görülen sağlık sorunlarından biridir. Meme kanserinin erken teşhis ve tedavisi, ölüm oranlarını büyük ölçüde azaltabilir. Meme kanseri tanısında mamografi, bilgisayarlı tomografi, manyetik rezonans, ultrason ve biyopsi gibi farklı görüntüleme yöntemleriyle elde edilen örnekler kullanılmaktadır. Biyopsi ile elde edilen histopatolojik görüntüler, meme kanserinin hangi evrede olduğu hakkında hayati bilgiler içerir. Bilgisayar destekli sistemler patologlara meme kanserinin erken teşhisinde yardımcı olan önemli araçlardır. Bu tez çalışmasında, Shearlet Dönüşümü (SD) ve Gri Seviye Eş-oluşum Matrisi (GSEM) dokusal özelliklerin çıkarılmasında kullanılmıştır. SD, görüntüleri çeşitli yönlerde analiz edebilen ve kenar tekilliklerine duyarlı olan gelişmiş bir ayrıklaştırma tabanlı yöntemdir. Bu özellikler SD'yi Fourier ve dalgacık gibi diğer ayrıştırma yöntemlerinden daha üstün kılar. Renk kanallarının histogram özellikleri de ayrıca meme kanseri evresinin tanısında ikinci bir değerlendirme düzeyi için kullanılmıştır. Bu özellikler, patologların histopatolojik görüntüleri derecelendirirken dikkate aldıkları en önemli yapı taşlarından biri olarak kabul edilir. Daha sonra, bu iki özelliği birleştirerek, sınıflandırma sonuçları birçok makine öğrenmesi olan sınıflandırıcılar ile değerlendirildi. Değerlendirmeler, iyi huylu ve kötü huylu histopatolojik numuneler içeren bir BreaKHis veri kümesi üzerinde gerçekleştirildi. Elde edilen sonuçlar cesaret verici olarak değerlendirildi. | tr_TR |