• Login
    View Item 
    •   DSpace Home
    • 2-DERGİLER
    • 03) Bitlis Eren Üniversitesi Fen Bilimleri Dergisi
    • Cilt 13, Sayı 4 (2024)
    • View Item
    •   DSpace Home
    • 2-DERGİLER
    • 03) Bitlis Eren Üniversitesi Fen Bilimleri Dergisi
    • Cilt 13, Sayı 4 (2024)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Comprehensive Energy and Exergy Analysis of a Pressurized Water Reactor Driven Multi-Stage Flash Desalination Plant

    Thumbnail
    View/Open
    Tam Metin/Full Text (1.429Mb)
    Date
    2024
    Author
    Erdem, AKYÜREK
    Tayfun, TANBAY
    Metadata
    Show full item record
    Abstract
    Nuclear energy-based seawater desalination is an environmentally friendly freshwater production approach. This study introduces a novel thermodynamic model integrating a pressurized water reactor’s (PWR) secondary cycle with a multistage flash (MSF) desalination facility to enhance freshwater production. The impacts of the design and operating conditions on thermal efficiency, utilization factor, gain output ratio, exergy efficiency, coefficient of ecological performance for cogeneration and exergy destruction factor are investigated. Results reveal that a higher live steam temperature and a reheater mass flow rate ratio is preferable for a better nuclear desalination performance. A larger freshwater production capacity is preferable for a better utilization factor, however increasing the capacity tends to decrease thermal efficiency, coefficient of ecological performance for cogeneration and exergy destruction factor. The selection of steam extraction location is important for very large scale plants, and the outlet of moisture separator is determined to be the best option. Parametric analysis shows that plant’s performance can be significantly improved by adjusting the design conditions. Thermal and exergy efficiencies of an optimized plant configuration are 3.01% and 4.70% higher, respectively as compared to a base plant. It is also found that steam generator and MSF unit cause 3.2% and 82% of the total irreversibility rate of PWR’s secondary cycle and MSF facility, respectively, and have the highest irreversibility rates for these sections of the plant.
    URI
    http://dspace.beu.edu.tr:8080/xmlui/handle/123456789/15696
    Collections
    • Cilt 13, Sayı 4 (2024) [38]





    Creative Commons License
    DSpace@BEU by Bitlis Eren University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     




    | Yönerge | Rehber | İletişim |

    sherpa/romeo

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Type

    My Account

    LoginRegister

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV