• Login
    View Item 
    •   DSpace Home
    • 2-DERGİLER
    • 03) Bitlis Eren Üniversitesi Fen Bilimleri Dergisi
    • Cilt 13, Sayı 2 (2024)
    • View Item
    •   DSpace Home
    • 2-DERGİLER
    • 03) Bitlis Eren Üniversitesi Fen Bilimleri Dergisi
    • Cilt 13, Sayı 2 (2024)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Estimating the Expected Influence Capacities of Nodes in Complex Networks under the Susceptible-Infectious-Recovered Model

    Thumbnail
    View/Open
    Tam Metin/Full Text (1.066Mb)
    Date
    2024
    Author
    ŞİMŞEK, Aybike
    Metadata
    Show full item record
    Abstract
    In recent years, epidemic modeling in complex networks has found many applications, including modeling of information or gossip spread in online social networks, modeling of malware spread in communication networks, and the most recent model of the COVID-19 pandemic. If the information disseminated is accurate, for example, maximizing its distribution is desirable, whereas if it is a rumor or a virus, its spread should be minimized. In this context, it is very important to identify super-spreaders that maximize or minimize propagation. Lately, studies for detecting super-spreaders have gained momentum. Most of the studies carried out aim to distinguish the influences of nodes under a specific propagation model (such as SIR) using network centrality measures and subsequently, to rank the nodes accordingly. However, in this study, we developed an algorithm that approximates the expected influence of nodes under the popular SIR model. By considering the behavior of the SIR model and only the shortest paths between nodes, the algorithm ranks the nodes according to this approximated value. Our developed algorithm is named the Expected Value Estimation (EVE). The main contribution of this study is that under the SIR model, the effects of nodes can be calculated quickly and realistically, regardless of the structure of the network. We compared the performance of EVE, using different SIR settings on real-world datasets, with that of many current well-known centrality measures. The experimental studies demonstrated that the solution quality (ranking capability) of EVE is superior to that of its competitors.
    URI
    http://dspace.beu.edu.tr:8080/xmlui/handle/123456789/15642
    Collections
    • Cilt 13, Sayı 2 (2024) [17]





    Creative Commons License
    DSpace@BEU by Bitlis Eren University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     




    | Yönerge | Rehber | İletişim |

    sherpa/romeo

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Type

    My Account

    LoginRegister

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV