• Login
    View Item 
    •   DSpace Home
    • 2-DERGİLER
    • 03) Bitlis Eren Üniversitesi Fen Bilimleri Dergisi
    • Cilt 12, Sayı 4 (2023)
    • View Item
    •   DSpace Home
    • 2-DERGİLER
    • 03) Bitlis Eren Üniversitesi Fen Bilimleri Dergisi
    • Cilt 12, Sayı 4 (2023)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    SkinCNN: Classification of Skin Cancer Lesions with A Novel CNN Model

    Thumbnail
    View/Open
    Tam Metin/Full Text (1.330Mb)
    Date
    2023
    Author
    Çetiner, İbrahim
    Metadata
    Show full item record
    Abstract
    Recently, there has been an increase in the number of cancer cases due to causes such as physical inactivity, sun exposure, environmental changes, harmful drinks and viruses. One of the most common types of cancer in the general population is skin cancer. There is an increase in exposure to the sun's harmful rays due to reasons such as environmental changes, especially ozone depletion. As exposure increases, skin changes occur in various parts of the body, especially the head and neck, in both young and old. In general, changes such as swelling in skin lesions are diagnosed as skin cancer. Skin cancers that are frequently seen in the society are known as actinic keratosis (akiec), basal cell carcinoma (bcc), bening keratosis (bkl), dermatofibroma (df), melanoma (mel), melanocytic nevi (nv), and vascular (vasc) types. It is not possible to consider all possible skin changes as skin cancer. In such a case, the development of a decision support system that can automatically classify the specified skin cancer images will help specialized healthcare professionals. For these purposes, a basic model based on MobileNet V3 was developed using the swish activation function instead of the ReLU activation function of the MobileNet architecture. In addition, a new CNN model with a different convolutional layer is proposed for skin cancer classification, which is different from the studies in the literature. The proposed CNN model (SkinCNN) achieved a 97% accuracy rate by performing the training process 30 times faster than the pre-trained MobileNet V3 model. In both models, training, validation and test data were modelled by partitioning according to the value of cross validation 5. MobileNet V3 model achieved F1 score, recall, precision, and accuracy metrics of 0.87, 0.88, 0.84, 0.83, 0.84, and 0.83, respectively, in skin cancer classification. The SkinCNN obtained F1 score, recall, precision, and accuracy metrics of 0.98, 0.97, 0.96, and 0.97, respectively. With the obtained performance metrics, the SkinCNN is competitive with the studies in the literature. In future studies, since the SkinCNN is fast and lightweight, it can be targeted to run on real-time systems.
    URI
    http://dspace.beu.edu.tr:8080/xmlui/handle/123456789/14856
    Collections
    • Cilt 12, Sayı 4 (2023) [32]





    Creative Commons License
    DSpace@BEU by Bitlis Eren University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     




    | Yönerge | Rehber | İletişim |

    sherpa/romeo

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Type

    My Account

    LoginRegister

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV