• Login
    View Item 
    •   DSpace Home
    • 2-DERGİLER
    • 03) Bitlis Eren Üniversitesi Fen Bilimleri Dergisi
    • Cilt 11, Sayı 4 (2022)
    • View Item
    •   DSpace Home
    • 2-DERGİLER
    • 03) Bitlis Eren Üniversitesi Fen Bilimleri Dergisi
    • Cilt 11, Sayı 4 (2022)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    The Optimization of the Zinc Electroplating Bath Using Machine Learning and Genetic Algorithms (NSGA-II)

    Thumbnail
    View/Open
    Tam Metin/Full Text (613.2Kb)
    Date
    2022
    Author
    KATIRCI, Ramazan
    TEKİN, Bilal
    Metadata
    Show full item record
    Abstract
    In this study, our aim is to predict the compositions of zinc electroplating bath using machine learning method and optimize the organic additives with NSGA-II (Nondominated Sorting Genetic Algorithm) optimization algorithm. Mask RCNN was utilized to classify the coated plates according to their appearance. The names of classes were defined as “Full Bright”, “Full Fail”, “HCD Fail” and “LCD Fail”. The intersection over union (IoU) values of the Mask RCNN model were determined in the range of 93–97%. Machine learning algorithms, MLP, SVR, XGB, GP, RF, were trained using the classification of the coated panels whose classes were detected by the Mask RCNN. In the machine learning training, the additives in the electrodeposition bath were specified as input and the classes of the coated panels as output. From the trained models, RF gave the highest F1 scores for all the classes. The F1 scores of RF model for “Full Bright”, “Full Fail”, “HCD Fail” and “LCD Fail” are 0.95, 0.91, 1 and 0.80 respectively. Genetic algorithm (NSGA-II) was used to optimize the compositions of the bath. The trained RF models for all the classes were utilized as the objective function. The ranges of organic additives, which should be used for all the classes in the electrodeposition bath, were determined.
    URI
    http://dspace.beu.edu.tr:8080/xmlui/handle/123456789/14740
    Collections
    • Cilt 11, Sayı 4 (2022) [23]





    Creative Commons License
    DSpace@BEU by Bitlis Eren University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     




    | Yönerge | Rehber | İletişim |

    sherpa/romeo

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Type

    My Account

    LoginRegister

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV