| dc.contributor.author | GÜLER, Erhan |  | 
| dc.date.accessioned | 2024-03-27T12:38:57Z |  | 
| dc.date.available | 2024-03-27T12:38:57Z |  | 
| dc.date.issued | 2022 |  | 
| dc.identifier.issn | 2147-3188 |  | 
| dc.identifier.uri | http://dspace.beu.edu.tr:8080/xmlui/handle/123456789/14657 |  | 
| dc.description.abstract | In this work, we examine the differential geometric objects of the hypersphere 𝐡� in four dimensional Euclidean geometry 𝔼�4. Giving some notions of four dimension, we consider the 𝑖�th curvature formulas of the hypersurfaces of 𝔼�4. In addition, we reveal the hypersphere satisfying ∆𝐈�𝐈�𝐈�𝐡� = 𝒜�𝐡�  for some 4×4 matrix 𝒜�. | tr_TR | 
| dc.language.iso | English | tr_TR | 
| dc.publisher | Bitlis Eren Üniversitesi | tr_TR | 
| dc.rights | info:eu-repo/semantics/openAccess | tr_TR | 
| dc.subject | Euclidean space | tr_TR | 
| dc.subject | Third Laplace-Beltrami operator | tr_TR | 
| dc.subject | Hypersphere | tr_TR | 
| dc.subject | Gauss map | tr_TR | 
| dc.subject | Curvature | tr_TR | 
| dc.title | Hypersphere and the Third Laplace-Beltrami Operator | tr_TR | 
| dc.type | Article | tr_TR | 
| dc.identifier.issue | 2 | tr_TR | 
| dc.identifier.startpage | 727 | tr_TR | 
| dc.identifier.endpage | 732 | tr_TR | 
| dc.relation.journal | Bitlis Eren Üniversitesi Fen Bilimleri Dergisi | tr_TR | 
| dc.identifier.volume | 11 | tr_TR |